Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humidity increases odor perception in terrestrial hermit crabs

04.07.2012
Olfaction in land crabs is still in an early transitional stage between life in water and on land.

Max Planck scientists have found out that the olfactory system in hermit crabs is still underdeveloped in comparison to that of vinegar flies. While flies have a very sensitive sense of smell and are able to identify various odor molecules in the air, crabs recognize only a few odors, such as the smell of organic acids, amines, aldehydes, or seawater.


Adult Coenobita clypeatus hermit crab using a discarded snail shell for protection: Both pairs of antennae are clearly visible. Olfactory receptors are located on the inner pair of antennae, which are bent upwards. The crabs’ sense of smell is still underdeveloped in comparison to insect olfaction. Max Planck Institute for Chemical Ecology/ Krång

Humidity significantly enhanced electrical signals induced in their antennal neurons as well as the corresponding behavioral responses to the odorants. The olfactory sense of vinegar flies, on the other hand, was not influenced by the level of air moisture at all. Exploring the molecular biology of olfaction in land crabs and flies thus allows insights into the evolution of the olfactory sense during the transition from life in water to life on land. (Proc. R. Soc. B, June 2012)

Crabs and flies

Crabs and flies are arthropods. Like many other life forms, they made a transition from water to land life in ancient times. The ancestors of the family of terrestrial hermit crabs (Coenobitidae) probably took this step about 20 million years ago. Today, hermit crabs live their entire lives on land, except for the larval stage. Odor signals are important cues for the crabs’ search for food. In order to detect odor molecules outside the water on land, the sensory organs of arthropods had to adapt to the new, terrestrial environment. How did sensory perception evolve during the transition from sea to land?

“The land hermit crab Coenobita clypeatus is an ideal study object to answer this question,” says Bill Hansson, director of the Department of Evolutionary Neuroethology at the Max Planck Institute for Chemical Ecology in Jena, Germany. The animals live in humid regions close to the sea and regularly visit water sources. Females release the larvae into the sea, where they grow into young crabs. These young crabs look for empty snail shells and live on land. They eat fruits and plants. This way of life suggests that the olfactory sense in crabs is still at an early stage of development.

Voltage and behavior

In a series of experiments, Anna-Sara Krång, who worked on an EU-funded Marie Curie Project, tested 140 odor substances with different chemical properties, such as acids, aldehydes, amines, alcohols, esters, aromatic compounds, and ethers. She measured the excitation in the neurons of the crabs’ antennae in response to single substances. The results were so-called “electroantennograms” (EAGs) which measured tiny voltage changes across the cell membranes in the microvolt range.

A striking feature of the subsequently performed bioassays was that the crabs’ behavioral responses to odorants were more obvious and much faster at a significantly increased humidity, assumingly due to an enhanced electrical excitability of their antennal neurons. The EAG showed in fact a reaction at the neurons which was three to ten times stronger if active odors were applied at a higher humidity. In contrast, antennal neurons of vinegar flies did not show any differences and responded evenly and independently of the degree of humidity.

Evolution of olfaction

The analysis of the experiments revealed that hermit crabs responded primarily to water-soluble polar odorants, such as acids, aldehydes and amines, because their effect may be easily enhanced in humid air. These results suggest that crabs have so-called ionotropic receptors in their antennal neurons. Such receptors were found in other crustaceans, such as water fleas (Daphnia pulex) or lobsters (Homarus americanus). In the water flea genome, no genetic information was actually found for so-called olfactory receptors, which are responsible for the highly sensitive olfactory system in insects, such as vinegar flies. Although the receptor genes which are present in the hermit crab genome have not been elucidated yet, the scientists assume that olfaction in crabs is mediated by the original, evolutionarily older ionotropic receptors. It is generally believed that the ancestors of many insect species made the transition from the seas to the continents during much earlier geological eras and that insects have adapted their olfactory system to life on land very well. Terrestrial crustaceans, on the other hand, may be able to use their sense of smell on land thanks to a basic molecular “equipment”, but their olfaction is still quite underdeveloped in comparison to insects. Therefore hermit crabs usually stay near the coast: not only because of the short way back to the sea where they reproduce, but also because of their limited sense of smell which does not allow them to orient themselves without any problems in the dry air of the heartlands. [JWK/AO]

Original article:

Anna-Sara Krång, Markus Knaden, Kathrin Steck, Bill S. Hansson: Transition from sea to land: olfactory function and constraints in the terrestrial hermit crab Coenobita clypeatus. Proceedings of the Royal Society B, June 6, 2012, online first. Doi: 10.1098/rspb.2012.0596.

Further Information:

Prof. Dr. Bill S. Hansson, +49 3641 571401, hansson@ice.mpg.de
Picture Requests:

Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de
or download from http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/735.html

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>