Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As in Humans, Sleep Solidifies a Bird’s Memories

13.01.2010
Sleeping is known to help humans stabilize information and tasks learned during the preceding day. Now, researchers have found that sleep has similar effects upon learning in starlings, a discovery that will open up future research into how the brain learns and preserves information.

The research, published Wednesday by The Journal of Neuroscience, fills an important gap between human behavioral findings and animal experiments of how the brain changes after learning and sleep.

"We really wanted to behaviorally show that these types of sleep-dependent memory benefits are occurring in animals," said Timothy Brawn, graduate student at the University of Chicago and lead author on the study. "What was remarkable was that the pattern here looks very similar to what we see in humans. There wasn't anything that was terribly different."

In order to survive, animals must be able to learn from experience, and understanding the biology of this process remains an open scientific question. Previous research has demonstrated that sleep plays in important role in vocal learning in birds, and is also important for stabilizing memories in humans.

In 2008, Brawn and co-authors Kimberly Fenn, Howard Nusbaum, and Daniel Margoliash found that a night's sleep stabilized the skills of people learning to play a first-person shooter video game. That study built upon prior research from Fenn, Nusbaum and Margoliash in 2003 that found sleep helped college students retain perceptual learning of computer-generated speech.

But sleep-dependent consolidation had not been conclusively proven behaviorally in adult animals. So Brawn set out to replicate the findings of his human study in the starling, a bird known for its vocal production and listening skills.

Starlings were trained to discriminate between two five-second snippets of birdsong in a learning task called a go-nogo procedure. If they heard one song, the "go" stimulus, they would receive a food pellet after correctly poking their beak into a hole in their cage. If the other song, the "no-go" stimulus, was played, it signaled that the bird should not poke its beak in the hole, or else the lights in the cage were briefly shut off.

Groups of starlings were trained in the task at different times of day, then re-tested later to see how well they retained their learning. In all groups, performance on the task improved after the birds slept, relative to their performance before sleep. That result replicated the sleep-dependent enhancement pattern observed in human studies.

Another human learning pattern, called waking performance deterioration, was not conclusively replicated in the starlings. When humans are taught a task in the morning, their performance on some tasks worsen over the course of the day, only to rebound after a period of sleep.

Starlings also showed a slight decrease in their performance of the no-nogo task over the course of a day without sleep, but those changes were not statistically significant. Brawn theorized that the deterioration may be more pronounced in humans because, unlike caged starlings, the human task must compete with the rest of the day’s experiences.

"In human studies, we can't control what they're doing throughout the day," Brawn said. "In starling experiments, they don't have any other interactions… I think there's a much reduced interference effect here." Future experiments with starlings and humans can directly study the effects of interference on learning and how sleep may overcome those effects.

Regardless, the discovery of similar sleep-dependent consolidation of learning in starlings and humans opens up new possibilities for research into the mechanisms of learning and memory.

“The result suggests this is a very broad, general phenomenon that might be shared across a great many vertebrates,” said Margoliash, professor of organismal biology, psychology and neuroscience. “It was quite important to show that and it now opens the possibility for mechanistic and behavioral experiments in animals that are difficult to do in humans.”

Such exploration will continue a long collaboration between Margoliash and Nusbaum’s groups that offers the unique ability to simultaneously study the interaction between learning, memory and sleep in multiple species, with results from bird experiments informing human studies and vice versa.

“There are very few paradigms of research that have unfolded at the same time in parallel between using humans and animal subjects,” said Nusbaum, professor and chair of psychology. “These scientific advances suggest that we may be able to use birds to study the role of sleep in vocal learning and language development in humans.”

What's clear now from an abundance of data is that sleep is an important stabilizer of learning across species, suggesting a long evolutionary history of this particular function. Brawn said he was convinced enough of the phenomenon to apply it to his own study habits.

"If I have an afternoon test, I want to make sure I've done a lot of studying the day before rather than just doing it the morning of the test," Brawn said.

The article, "Sleep-Dependent Consolidation of Auditory Discrimination in Adult Starlings," will be appear in the January 13th issue of The Journal of Neuroscience. The research was funded in part by grants from the National Institute on Deafness and Other Communication Disorders and the National Institute of Mental Health.

***Video and starling photographs available on request. Photo credit: Daniel Baleckaitis.***

Rob Mitchum | Newswise Science News
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>