Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like Humans, the Paper Wasp Has a Special Talent for Learning Faces

05.12.2011
Though paper wasps have brains less than a millionth the size of humans', they have evolved specialized face-learning abilities analogous to the system used by humans, according to a University of Michigan evolutionary biologist and one of her graduate students.

"Wasps and humans have independently evolved similar and very specialized face-learning mechanisms, despite the fact that everything about the way we see and the way our brains are structured is different," said graduate student Michael Sheehan, who worked with evolutionary biologist Elizabeth Tibbetts on the face-recognition study. "That's surprising and sort of bizarre."

The study marks the first time that any insect has demonstrated such a high level of specialized visual learning, said Sheehan, lead author of a paper on the topic scheduled for online publication in the journal Science on Thursday, Dec. 1.

In earlier research, Tibbetts showed that paper wasps (Polistes fuscatus) recognize individuals of their species by variations in their facial markings and that they behave more aggressively toward wasps with unfamiliar faces.

In 2008, Sheehan and Tibbetts published a paper in Current Biology demonstrating that these wasps have surprisingly long memories and base their behavior on what they remember of previous social interactions with other wasps.

In their latest study, Sheehan and Tibbetts tested learning by training wasps to discriminate between two different images mounted inside a T-maze, with one image displayed at each end of the top arm of the T.

Twelve wasps were trained for 40 consecutive trials on each image type. The paired images included photos of normal paper wasp faces, photos of caterpillars, simple geometric patterns, and computer-altered wasp faces. A reward was consistently associated with one image in a pair.

The researchers found that the paper wasps, which are generalist visual predators of caterpillars, were able to differentiate between two unaltered P. fuscatus faces faster and more accurately than a pair of caterpillar photos, two different geometric patterns, or a pair of computer-altered wasp faces. They learned to pick the correct unaltered wasp face about three-quarters of the time.

Two simple black-and-white geometric patterns should have been easy for the wasps to distinguish, because the insects' compound eyes are good at detecting contrast and outlines, Sheehan said. Yet the wasps learned complicated face images more rapidly than the geometric patterns.

At the same time, introducing seemingly minor changes to a P. fuscatus facial image—by using a photo-editing program to remove a wasp's antennae, for example—caused test subjects to perform much worse on the facial recognition test.

"This shows that the way they learn faces is different than the way they seem to be learning other patterns. They treat faces as a different kind of thing," Sheehan said.

"Humans have a specialized face-learning ability, and it turns out that this wasp that lives on the side of your house evolved an analogous system on its own," he said. "But it's important to note that we're not claiming the exact process by which wasps learn faces is the same as humans."

The ability to recognize individuals is important to a species like P. fuscatus, in which multiple queens establish communal nests and raise offspring cooperatively, but also compete to form a linear dominance hierarchy. Remembering who they've already bested–and been bested by–keeps individuals from wasting energy on repeated aggressive encounters and presumably promotes colony stability by reducing friction.

Sheehan also tested a closely related species of wasp, P. metricus, which lacks the varied facial markings of the paper wasp and lives in colonies controlled by a single queen. In the T-maze test, P. metricus scored no better than chance when asked to distinguish between individuals of its own species.

"Differences in face learning between the two species cannot be attributed to general differences in visual learning, as both species learned to discriminate between pairs of artificial patterns and caterpillars at the same rate and with the same accuracy," Sheehan and Tibbetts wrote. "P. fuscatus and P. metricus differed only in their ability to learn normal face stimuli."

"The evolutionary flexibility of specialized face learning is striking and suggests that specialized cognition may be a widespread adaptation to facilitate complex behavioral tasks such as individual recognition," they wrote.

Funding for the project was provided by the University of Michigan and an E.S. George Reserve Scholarship to Sheehan.

Related links

Michael Sheehan: http://sitemaker.umich.edu/sheehan/michael_sheehan__home
Elizabeth Tibbetts: http://lsa.umich.edu/eeb/directory/faculty/tibbetts/

Jim Erickson | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>