Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like Humans, the Paper Wasp Has a Special Talent for Learning Faces

05.12.2011
Though paper wasps have brains less than a millionth the size of humans', they have evolved specialized face-learning abilities analogous to the system used by humans, according to a University of Michigan evolutionary biologist and one of her graduate students.

"Wasps and humans have independently evolved similar and very specialized face-learning mechanisms, despite the fact that everything about the way we see and the way our brains are structured is different," said graduate student Michael Sheehan, who worked with evolutionary biologist Elizabeth Tibbetts on the face-recognition study. "That's surprising and sort of bizarre."

The study marks the first time that any insect has demonstrated such a high level of specialized visual learning, said Sheehan, lead author of a paper on the topic scheduled for online publication in the journal Science on Thursday, Dec. 1.

In earlier research, Tibbetts showed that paper wasps (Polistes fuscatus) recognize individuals of their species by variations in their facial markings and that they behave more aggressively toward wasps with unfamiliar faces.

In 2008, Sheehan and Tibbetts published a paper in Current Biology demonstrating that these wasps have surprisingly long memories and base their behavior on what they remember of previous social interactions with other wasps.

In their latest study, Sheehan and Tibbetts tested learning by training wasps to discriminate between two different images mounted inside a T-maze, with one image displayed at each end of the top arm of the T.

Twelve wasps were trained for 40 consecutive trials on each image type. The paired images included photos of normal paper wasp faces, photos of caterpillars, simple geometric patterns, and computer-altered wasp faces. A reward was consistently associated with one image in a pair.

The researchers found that the paper wasps, which are generalist visual predators of caterpillars, were able to differentiate between two unaltered P. fuscatus faces faster and more accurately than a pair of caterpillar photos, two different geometric patterns, or a pair of computer-altered wasp faces. They learned to pick the correct unaltered wasp face about three-quarters of the time.

Two simple black-and-white geometric patterns should have been easy for the wasps to distinguish, because the insects' compound eyes are good at detecting contrast and outlines, Sheehan said. Yet the wasps learned complicated face images more rapidly than the geometric patterns.

At the same time, introducing seemingly minor changes to a P. fuscatus facial image—by using a photo-editing program to remove a wasp's antennae, for example—caused test subjects to perform much worse on the facial recognition test.

"This shows that the way they learn faces is different than the way they seem to be learning other patterns. They treat faces as a different kind of thing," Sheehan said.

"Humans have a specialized face-learning ability, and it turns out that this wasp that lives on the side of your house evolved an analogous system on its own," he said. "But it's important to note that we're not claiming the exact process by which wasps learn faces is the same as humans."

The ability to recognize individuals is important to a species like P. fuscatus, in which multiple queens establish communal nests and raise offspring cooperatively, but also compete to form a linear dominance hierarchy. Remembering who they've already bested–and been bested by–keeps individuals from wasting energy on repeated aggressive encounters and presumably promotes colony stability by reducing friction.

Sheehan also tested a closely related species of wasp, P. metricus, which lacks the varied facial markings of the paper wasp and lives in colonies controlled by a single queen. In the T-maze test, P. metricus scored no better than chance when asked to distinguish between individuals of its own species.

"Differences in face learning between the two species cannot be attributed to general differences in visual learning, as both species learned to discriminate between pairs of artificial patterns and caterpillars at the same rate and with the same accuracy," Sheehan and Tibbetts wrote. "P. fuscatus and P. metricus differed only in their ability to learn normal face stimuli."

"The evolutionary flexibility of specialized face learning is striking and suggests that specialized cognition may be a widespread adaptation to facilitate complex behavioral tasks such as individual recognition," they wrote.

Funding for the project was provided by the University of Michigan and an E.S. George Reserve Scholarship to Sheehan.

Related links

Michael Sheehan: http://sitemaker.umich.edu/sheehan/michael_sheehan__home
Elizabeth Tibbetts: http://lsa.umich.edu/eeb/directory/faculty/tibbetts/

Jim Erickson | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>