Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like Humans, the Paper Wasp Has a Special Talent for Learning Faces

05.12.2011
Though paper wasps have brains less than a millionth the size of humans', they have evolved specialized face-learning abilities analogous to the system used by humans, according to a University of Michigan evolutionary biologist and one of her graduate students.

"Wasps and humans have independently evolved similar and very specialized face-learning mechanisms, despite the fact that everything about the way we see and the way our brains are structured is different," said graduate student Michael Sheehan, who worked with evolutionary biologist Elizabeth Tibbetts on the face-recognition study. "That's surprising and sort of bizarre."

The study marks the first time that any insect has demonstrated such a high level of specialized visual learning, said Sheehan, lead author of a paper on the topic scheduled for online publication in the journal Science on Thursday, Dec. 1.

In earlier research, Tibbetts showed that paper wasps (Polistes fuscatus) recognize individuals of their species by variations in their facial markings and that they behave more aggressively toward wasps with unfamiliar faces.

In 2008, Sheehan and Tibbetts published a paper in Current Biology demonstrating that these wasps have surprisingly long memories and base their behavior on what they remember of previous social interactions with other wasps.

In their latest study, Sheehan and Tibbetts tested learning by training wasps to discriminate between two different images mounted inside a T-maze, with one image displayed at each end of the top arm of the T.

Twelve wasps were trained for 40 consecutive trials on each image type. The paired images included photos of normal paper wasp faces, photos of caterpillars, simple geometric patterns, and computer-altered wasp faces. A reward was consistently associated with one image in a pair.

The researchers found that the paper wasps, which are generalist visual predators of caterpillars, were able to differentiate between two unaltered P. fuscatus faces faster and more accurately than a pair of caterpillar photos, two different geometric patterns, or a pair of computer-altered wasp faces. They learned to pick the correct unaltered wasp face about three-quarters of the time.

Two simple black-and-white geometric patterns should have been easy for the wasps to distinguish, because the insects' compound eyes are good at detecting contrast and outlines, Sheehan said. Yet the wasps learned complicated face images more rapidly than the geometric patterns.

At the same time, introducing seemingly minor changes to a P. fuscatus facial image—by using a photo-editing program to remove a wasp's antennae, for example—caused test subjects to perform much worse on the facial recognition test.

"This shows that the way they learn faces is different than the way they seem to be learning other patterns. They treat faces as a different kind of thing," Sheehan said.

"Humans have a specialized face-learning ability, and it turns out that this wasp that lives on the side of your house evolved an analogous system on its own," he said. "But it's important to note that we're not claiming the exact process by which wasps learn faces is the same as humans."

The ability to recognize individuals is important to a species like P. fuscatus, in which multiple queens establish communal nests and raise offspring cooperatively, but also compete to form a linear dominance hierarchy. Remembering who they've already bested–and been bested by–keeps individuals from wasting energy on repeated aggressive encounters and presumably promotes colony stability by reducing friction.

Sheehan also tested a closely related species of wasp, P. metricus, which lacks the varied facial markings of the paper wasp and lives in colonies controlled by a single queen. In the T-maze test, P. metricus scored no better than chance when asked to distinguish between individuals of its own species.

"Differences in face learning between the two species cannot be attributed to general differences in visual learning, as both species learned to discriminate between pairs of artificial patterns and caterpillars at the same rate and with the same accuracy," Sheehan and Tibbetts wrote. "P. fuscatus and P. metricus differed only in their ability to learn normal face stimuli."

"The evolutionary flexibility of specialized face learning is striking and suggests that specialized cognition may be a widespread adaptation to facilitate complex behavioral tasks such as individual recognition," they wrote.

Funding for the project was provided by the University of Michigan and an E.S. George Reserve Scholarship to Sheehan.

Related links

Michael Sheehan: http://sitemaker.umich.edu/sheehan/michael_sheehan__home
Elizabeth Tibbetts: http://lsa.umich.edu/eeb/directory/faculty/tibbetts/

Jim Erickson | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>