Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why humans outlive apes

26.01.2010
Genetic adaption to meat-rich diets may also lead to high rates of Alzheimer's and heart disease

The same evolutionary genetic advantages that have helped increase human lifespans also make us uniquely susceptible to diseases of aging such as cancer, heart disease and dementia, reveals a study to be published in a special PNAS collection on "Evolution in Health and Medicine" on Tuesday, Jan. 26.

Comparing the life spans of humans with other primates, Caleb Finch, ARCO & William F. Kieschnick Professor in the Neurobiology of Aging in the USC Davis School of Gerontology, explains that slight differences in DNA sequencing in humans have enabled us to better respond to infection and inflammation, the leading cause of mortality in wild chimpanzees and in early human populations with limited access to modern medicine.

Specifically, humans have evolved what Finch calls "a meat-adaptive gene" that has increased the human lifespan by regulating the effects of meat-rich diets. ApoE3 is unique to humans and is a variant of the cholesterol transporting gene, apolipoprotein E, which regulates inflammation and many aspects of aging in the brain and arteries.

"Over time, ingestion of red meat, particularly raw meat infected with parasites in the era before cooking, stimulates chronic inflammation that leads to some of the common diseases of aging," Finch said.

However, another expression of apolipoprotein E in humans -- the minor allele, apoE4 -- can increase the risk of heart disease and Alzheimer's disease by several-fold, Finch explained. ApoE4 carriers have higher totals of blood cholesterol, more oxidized blood lipids and higher rates of early onset coronary heart disease and Alzheimer's disease.

"The chimpanzee apoE functions more like the "good" apoE3, which contributes to low levels of heart disease and Alzheimer's," Finch said. Chimpanzees in captivity have unusually low levels of heart disease and Alzheimer-like changes during aging when compared to humans.

Finch hypothesizes that the expression of ApoE4 in humans could be the result of the "antagonistic pleiotropy theory" of aging, in which genes selected to fight diseases in early life have adverse affects in later life.

"ApoeE may be a prototype for other genes that enabled the huge changes in human lifespan, as well as brain size, despite our very unape-like meat-rich diets," Finch said. "Drugs being developed to alter activities of apoE4 may also enhance lifespan of apoE4 carriers."

In spite of their genetic similarity to humans, chimpanzees and great apes have maximum lifespans that rarely exceed 50 years. Even in high-mortality modern hunter-forager populations, human life expectancy at birth is still twice that of wild chimpanzees.

Support was provided by the National Institute on Aging and the Ellison Medical Foundation.

Suzanne Wu | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>