Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans and companion animals harbor the same types of MRSA infections

13.05.2014

A shared population of methicillin-resistant Staphylococcus aureus (MRSA) bacteria circulates both in humans and companion animals, according to a study published this week in mBio®, the online open-access journal of the American Society for Microbiology.

"Our study demonstrates that humans and companion animals readily exchange and share MRSA bacteria from the same population," says senior author Mark Holmes, senior lecturer in preventive veterinary medicine at the University of Cambridge in England. MRSA naturally lives on the skin and also causes difficult-to-treat infections in humans and animals.

"It also furthers the 'one health' view of infectious diseases that the pathogens infecting both humans and animals are intrinsically linked, and provides evidence that antibiotic usage in animal medicine is shaping the population of a major human pathogen."

Holmes and colleagues sequenced the genomes of 46 MRSA samples from cats and dogs, collected between August 2003 and August 2007 from two large veterinary hospitals and several smaller veterinary practices throughout the United Kingdom.

The samples were found to be similar to those associated with MRSA strains in humans, with most coming from wound infections or skin and soft tissue infections. Additional samples were from the animals' urine; cerebrospinal fluid; nasal wash or discharge; and bloodstream, heart valve or joint infections.

Comparing the samples to a global collection of human MRSA samples sequenced as part of other studies and evaluating the evolution of the bacteria, the investigators found that all animal infections fell in the same family: Epidemic MRSA 15 (EMRSA-15) (sequence type ST22), a common strain of MRSA first detected in the United Kingdom in the 1990s that spread throughout Europe.

The bacteria were interspersed throughout the EMRSA-15 genetic family tree. Nearly all samples were genetically similar to human bacteria, and their place in the family tree showed that the companion animal bacteria most likely originated in humans.

Researchers also observed that samples from the same veterinary hospitals clustered together genetically, suggesting that as in human hospitals, MRSA can be readily transmitted in veterinary hospital settings.

"It's a reminder that constant vigilance and high levels of hygiene are just as important when treating cats and dogs as with humans," Holmes says.

Analysis of the genomes showed very little genetic discrimination between bacteria samples from humans and animals, indicating that the MRSA from cats and dogs had not undergone extensive adaptation to the companion animals, suggesting this type of MRSA has a broad host range. But the animal MRSA were significantly less likely than those from humans to have resistance to the antibiotic erythromycin, used rarely in English veterinary practices. Instead, these MRSA from animals were more likely to contain mutations making them resistant to the antibiotic clindamycin, used widely in veterinary medicine in the United Kingdom.

Holmes says pet owners don't need to worry.

"MRSA infection in cats and dogs is still extremely rare," Holmes says. "There is very little risk of owners getting ill from their pets." In addition, he says, healthy pets are not likely to pick up MRSA from their human companions but if a pet already is ill or its health is severely compromised, MRSA patients should inform their pets' veterinarians.

###

The study was supported by a Medical Research Council Partnership grant held between the Department of Veterinary Medicine and the School of Clinical Medicine at the University of Cambridge, the Moredun Research Institute and the Wellcome Trust Sanger Institute.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | Eurek Alert!

Further reports about: MRSA Medicine animals antibiotic bacteria genomes infections microbiology skin

More articles from Life Sciences:

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

nachricht Heating and cooling with light leads to ultrafast DNA diagnostics
31.07.2015 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>