Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like humans, amoebae pack a lunch before they travel

20.01.2011
Amoebae increase survival odds through rudimentary form of agriculture; finding has implications for human diseases

Some amoebae do what many people do. Before they travel, they pack a lunch.

In results of a study reported today in the journal Nature, evolutionary biologists Joan Strassmann and David Queller of Rice University show that long-studied social amoebae Dictyostellum discoideum (commonly known as slime molds) increase their odds of survival through a rudimentary form of agriculture.

Research by lead author Debra Brock, a graduate student at Rice, found that some amoebae sequester their food--particular strains of bacteria--for later use.

"We now know that primitively social slime molds have genetic variation in their ability to farm beneficial bacteria as a food source," says George Gilchrist, program director in the National Science Foundation's Division of Environmental Biology, which funded the research. "But the catch is that with the benefits of a portable food source, comes the cost of harboring harmful bacteria."

After these "farmer" amoebae aggregate into a slug, they migrate in search of nourishment--and form a fruiting body, or a stalk of dead amoebae topped by a sorus, a structure containing fertile spores. Then they release the bacteria-containing spores to the environment as feedstock for continued growth.

The findings run counter to the presumption that all "Dicty" eat everything in sight before they enter the social spore-forming stage.

Non-farmer amoebae do eat everything, but farmers were found to leave food uneaten, and their slugs don't travel as far.

Perhaps because they don't have to.

The advantages of going hungry now to ensure a good food supply later are clear, as farmers are able to thrive in environments in which non-farmers find little food.

The researchers found that about a third of wild-collected Dicty are farmers.

Instead of consuming all the bacteria they encounter, these amoebae eat less and incorporate bacteria into their migratory systems.

Brock showed that carrying bacteria is a genetic trait by eliminating all living bacteria from four farmers and four non-farmers--the control group--by treating them with antibiotics.

All amoebae were grown on dead bacteria; tests confirmed that they were free of live bacteria.

When the eight clones were then fed live bacteria, the farmers all regained their abilities to seed bacteria colonies, while the non-farmers did not.

Dicty farmers are always farmers; non-farmers never learn.

Rice graduate student Tracy Douglas co-authored the paper with Brock, Queller and Strassmann. She confirmed that farmers and non-farmers belong to the same species and do not form a distinct evolved group.

Still, mysteries remain.

The researchers want to know what genetic differences separate farmers from non-farmers. They also wonder why farmer clones don't migrate as far as their counterparts.

It might be a consequence of bacterial interference, they say, or an evolved response, since farmers carry the seeds of their own food supply and don't need to go as far.

Also, some seemingly useless or even harmful bacteria are not consumed as food, but may serve an as-yet-undetermined function, Brock says.

That has implications for treating disease as it may, for instance, provide clues to the way tuberculosis bacteria invade cells, says Strassmann, infecting the host while resisting attempts to break them down.

The results demonstrate the importance of working in natural environments with wild organisms whose complex ties to their living environment have not been broken.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>