Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human against virus – a molecular race

14.12.2012
Immunologists discover a novel target to suppress a common virus

Most people become infected with the human cytomegalovirus (CMV) at some point in life. Over millions of years, our immune system has evolved a trick or two to defend us against this virus, but unfortunately, CMV evolved its own tricks, too. New drugs to target viral genes that counter the immune response might support the immune system in the fight against this widespread virus.


Macrophages release a signal that induces cellular suicide in virus-infected cells.
Manfred Rohde/HZI

The idea was born at the Helmholtz Centre for Infection Research (HZI), where scientists recently defined how CMV keeps infected cells alive, although they should undergo programmed suicide and simultaneously kill off the viruses that grow in them.

While the majority of us are life-long carriers of the herpes virus CMV, the infection is in balance with the immune system and remains asymptomatic in most of us. If the immune system becomes deficient, as is the case in organ transplanted people, or in those with AIDS, CMV can quickly become a serious problem. HZI researchers, along with their colleagues at the Max von Pettenkofer Institute in Munich, have now characterized a novel way in which even the body of severely immunodeficient people may defend itself against the virus. The researchers published their findings in the scientific journal PLOS Pathogens.

It is known that the immune system prompts infected cells to undergo self-destruction. In a process called apoptosis, these cells practically commit suicide. By sacrificing infected cells at an early stage, the body prevents pathogen spreading. The trigger may come from within the cell itself or from neighboring immune cells. HZI immunologists focused on the latter scenario, in which cells receive the suicide signal via "death receptors" on their surfaces. "We have managed to identify the immune cells that send out the signaling molecules, which dock on death receptors," says HZI scientist Dr. Linda Ebermann. This "death signal" originates from macrophages, the immune system's scavenger cells that engulf invading pathogens. Activated macrophages migrate to places of inflammation where virus-infected cells abound. There, they release bioactive molecules, which induce suicide in surrounding cells. Up to now, it was unknown that macrophages contribute to virus control in this way.

Not only did the HZI immunologists identify the source of the signals. They also demonstrated what the viruses' evolutionary response in the molecular arms race with the host looks like. "Viruses are not alive. To replicate, they need a living host cell," Ebermann explains. "Cytomegalovirus forces infected cells to manufacture proteins from viral genes. One of those can suppress the cellular suicide program. That way, the virus can proliferate and spread undisturbed."

In their study, the researchers took advantage of a CMV variant that specifically infects mice. This strain closely resembles the one that infects humans: just as people with a weakened immune system would fall ill if infected with CMV, the murine CMV causes disease in immunocompromised mice, which lack certain components of their immune system. In these mice, the virus successfully shuts down the cellular suicide program with the help of a protein called M36 and thus ensures survival of its host cell. Remarkably, CMV mutants lacking this gene cannot replicate even in extremely susceptible mouse strains, where a single infectious unit of the wild-type virus would be lethal. Chances are that the human virus may work in the same way. "The proteins that inhibit apoptosis in human and in the mouse model are highly similar. Therefore we can pretty much assume that our findings can readily be applied to humans," explains Prof. Luka Cicin-Sain, head of HZI's Immune Aging and Chronic Infections research group, and assistant professor at the MHH's Institute of Virology.

For the time being, the virus has the upper hand in an immunocompromised person, but the HZI researchers' work has helped to uncover a viral protein which is critical for viral replication and therefore may be a valid target for antiviral drugs. According to Cicin-Sain, "it is conceivable that, with the help of drugs, we may be able to prevent CMV from shutting down the cellular suicide program. In that case, we would deprive the virus of the chance to spread, which would benefit CMV infected patients with an already compromised immune system."

Original publication:
Linda Ebermann, Zsolt Ruzsics, Carlos A. Guzmán, Nico van Rooijen, Rosaely Casalegno-Garduño, Ulrich Koszinowski, Luka Čičin-Šain
Block of Death-Receptor Apoptosis Protects Mouse Cytomegalovirus from Macrophages and is a Determinant of Virulence in Immunodeficient Hosts

PLOS Pathogens 2012

These findings are the first results of the Helmholtz Virtual Institute for Viral Strategies of Immune Evasion (VISTRIE), an international consortium of scientists working at Helmholtz institutes and leading German and international universities that was initiated by HZI scientists led by Prof. Luka Cicin-Sain.

The group "Immune Aging and Chronic Infections" investigates the influence of pathogens on the aging of the immune system. To do so, the researchers are studying infection with cytomegalovirus (CMV).

The Helmholtz Centre for Infection Research
At the Helmholtz Centre for Infection Research (HZI) in Braunschweig, scientists are studying microbial virulence factors, host-pathogen interactions and immunity. The goal is to develop strategies for the diagnosis, prevention and therapy of human infectious diseases.

http://www.helmholtz-hzi.de/en

Dr. Birgit Manno | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de/en
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/human_against_virus_a_molecular_race/

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>