Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Human against virus – a molecular race

Immunologists discover a novel target to suppress a common virus

Most people become infected with the human cytomegalovirus (CMV) at some point in life. Over millions of years, our immune system has evolved a trick or two to defend us against this virus, but unfortunately, CMV evolved its own tricks, too. New drugs to target viral genes that counter the immune response might support the immune system in the fight against this widespread virus.

Macrophages release a signal that induces cellular suicide in virus-infected cells.
Manfred Rohde/HZI

The idea was born at the Helmholtz Centre for Infection Research (HZI), where scientists recently defined how CMV keeps infected cells alive, although they should undergo programmed suicide and simultaneously kill off the viruses that grow in them.

While the majority of us are life-long carriers of the herpes virus CMV, the infection is in balance with the immune system and remains asymptomatic in most of us. If the immune system becomes deficient, as is the case in organ transplanted people, or in those with AIDS, CMV can quickly become a serious problem. HZI researchers, along with their colleagues at the Max von Pettenkofer Institute in Munich, have now characterized a novel way in which even the body of severely immunodeficient people may defend itself against the virus. The researchers published their findings in the scientific journal PLOS Pathogens.

It is known that the immune system prompts infected cells to undergo self-destruction. In a process called apoptosis, these cells practically commit suicide. By sacrificing infected cells at an early stage, the body prevents pathogen spreading. The trigger may come from within the cell itself or from neighboring immune cells. HZI immunologists focused on the latter scenario, in which cells receive the suicide signal via "death receptors" on their surfaces. "We have managed to identify the immune cells that send out the signaling molecules, which dock on death receptors," says HZI scientist Dr. Linda Ebermann. This "death signal" originates from macrophages, the immune system's scavenger cells that engulf invading pathogens. Activated macrophages migrate to places of inflammation where virus-infected cells abound. There, they release bioactive molecules, which induce suicide in surrounding cells. Up to now, it was unknown that macrophages contribute to virus control in this way.

Not only did the HZI immunologists identify the source of the signals. They also demonstrated what the viruses' evolutionary response in the molecular arms race with the host looks like. "Viruses are not alive. To replicate, they need a living host cell," Ebermann explains. "Cytomegalovirus forces infected cells to manufacture proteins from viral genes. One of those can suppress the cellular suicide program. That way, the virus can proliferate and spread undisturbed."

In their study, the researchers took advantage of a CMV variant that specifically infects mice. This strain closely resembles the one that infects humans: just as people with a weakened immune system would fall ill if infected with CMV, the murine CMV causes disease in immunocompromised mice, which lack certain components of their immune system. In these mice, the virus successfully shuts down the cellular suicide program with the help of a protein called M36 and thus ensures survival of its host cell. Remarkably, CMV mutants lacking this gene cannot replicate even in extremely susceptible mouse strains, where a single infectious unit of the wild-type virus would be lethal. Chances are that the human virus may work in the same way. "The proteins that inhibit apoptosis in human and in the mouse model are highly similar. Therefore we can pretty much assume that our findings can readily be applied to humans," explains Prof. Luka Cicin-Sain, head of HZI's Immune Aging and Chronic Infections research group, and assistant professor at the MHH's Institute of Virology.

For the time being, the virus has the upper hand in an immunocompromised person, but the HZI researchers' work has helped to uncover a viral protein which is critical for viral replication and therefore may be a valid target for antiviral drugs. According to Cicin-Sain, "it is conceivable that, with the help of drugs, we may be able to prevent CMV from shutting down the cellular suicide program. In that case, we would deprive the virus of the chance to spread, which would benefit CMV infected patients with an already compromised immune system."

Original publication:
Linda Ebermann, Zsolt Ruzsics, Carlos A. Guzmán, Nico van Rooijen, Rosaely Casalegno-Garduño, Ulrich Koszinowski, Luka Čičin-Šain
Block of Death-Receptor Apoptosis Protects Mouse Cytomegalovirus from Macrophages and is a Determinant of Virulence in Immunodeficient Hosts

PLOS Pathogens 2012

These findings are the first results of the Helmholtz Virtual Institute for Viral Strategies of Immune Evasion (VISTRIE), an international consortium of scientists working at Helmholtz institutes and leading German and international universities that was initiated by HZI scientists led by Prof. Luka Cicin-Sain.

The group "Immune Aging and Chronic Infections" investigates the influence of pathogens on the aging of the immune system. To do so, the researchers are studying infection with cytomegalovirus (CMV).

The Helmholtz Centre for Infection Research
At the Helmholtz Centre for Infection Research (HZI) in Braunschweig, scientists are studying microbial virulence factors, host-pathogen interactions and immunity. The goal is to develop strategies for the diagnosis, prevention and therapy of human infectious diseases.

Dr. Birgit Manno | Helmholtz-Zentrum
Further information:

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>