Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human tissue from a 3D printer

16.05.2014

Early May saw the official launch of the world’s first international Master’s degree program in “biofabrication”. Participating in the program are universities from Australia, the Netherlands, and Germany. The German representative is the University of Würzburg.

It sounds a bit like science fiction: Accident victims receive a replacement for their destroyed bones that is an exact fit for the damaged site. The material comes from a 3D printer and was built up there layer by layer using special biomaterials subsequently colonized by cells belonging to the patient.

But it is not just bones; muscles, nerves, and skin can also be made by the printer to match each patient perfectly. Because the implant was constructed from the body’s own cells, the body does not reject it; the immune system does not have to be suppressed with drugs.

In actual fact, this scenario has been a reality for quite some time now – at least when it comes to healing damaged bone. But scientists are confident that in a few years they will be in a position to use 3D technology to help reconstruct breast tissue for women after breast cancer surgery, for example, or even to produce entire organs.

This coming winter semester, a new international Master’s degree program will start that will focus on precisely this area of research: BIOFAB or, to give it its full name, Biofabrication Training for Future Manufacturing. The parties involved in this world-first offering are:

• Queensland University of Technology (Australia)
• University of Woollongong (Australia)
• University Medical Center Utrecht (The Netherlands)
• Julius Maximilian University of Würzburg (Germany)

The course will be supported financially by the European Union and the Australian Government.

“The University of Würzburg has had outstanding expertise in the field of 3D printing of human tissue and in tissue engineering for some time now,” says Professor Jürgen Groll. Groll has been Chairman of the Department for Functional Materials in Medicine and Dentistry at Würzburg since August 2010.

One of his areas of expertise is the production of extremely fine threads made from biocompatible polymers, which are spun into nets that serve as implants. Using a technology that is currently unique across Europe, which is known as melt electrospinning writing, Groll is able to direct a polymer melt through the nozzle of a kind of inkjet printer and spread it on a substrate, generating any desired structure.

Professor Paul Dalton, who is largely organizing the program, is one of the leading pioneers in the field of melt electrospinning writing. He developed and has since advanced this technology in his laboratory at the Institute of Health and Biomedical Innovation at Queensland University of Technology. He will help run the new Master’s degree program for the University of Würzburg as well.

The new Master’s degree program

The four universities involved will each admit ten students to the Master’s course. They will complete around half of their studies in Australia and around half in Europe. At the end, they will receive an international Master’s degree both in Australia and in Europe.

“Biofabrication is a research field that includes many disciplines,” says Paul Dalton. Anyone who wants to work in this field should have good knowledge of subjects like chemistry, physics, biology, medicine, robotics, and information technology. Accordingly, graduates in these subjects can apply for a place on the new degree program. A course awaits them that will place a strong emphasis on research with a high proportion of laboratory work. Over the four semesters they will conduct biofabrication research at the top laboratories in Europe and Australia, work with the leading experts, and establish international contacts in the process.

“Biofabrication needs researchers with broad-based knowledge and offers a career option for students with a general interest in science. The graduates of this program will be specialists sought after internationally,” Dalton promises. Thanks to their training they will be capable of “leading this exciting revolution in medicine – a revolution that will be increasingly important for an aging society.”

Contact

Prof. Dr. Jürgen Groll, T: +49 (0)931 - 201 73610; office@fmz.uni-wuerzburg.de

Prof. Dr. Paul Dalton, daltonlab@gmail.com

Weitere Informationen:

http://www.biofabdegree.net

Gunnar Bartsch | idw - Informationsdienst Wissenschaft

Further reports about: biocompatible biomaterials breast damaged electrospinning nerves replacement

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>