Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Human tissue from a 3D printer


Early May saw the official launch of the world’s first international Master’s degree program in “biofabrication”. Participating in the program are universities from Australia, the Netherlands, and Germany. The German representative is the University of Würzburg.

It sounds a bit like science fiction: Accident victims receive a replacement for their destroyed bones that is an exact fit for the damaged site. The material comes from a 3D printer and was built up there layer by layer using special biomaterials subsequently colonized by cells belonging to the patient.

But it is not just bones; muscles, nerves, and skin can also be made by the printer to match each patient perfectly. Because the implant was constructed from the body’s own cells, the body does not reject it; the immune system does not have to be suppressed with drugs.

In actual fact, this scenario has been a reality for quite some time now – at least when it comes to healing damaged bone. But scientists are confident that in a few years they will be in a position to use 3D technology to help reconstruct breast tissue for women after breast cancer surgery, for example, or even to produce entire organs.

This coming winter semester, a new international Master’s degree program will start that will focus on precisely this area of research: BIOFAB or, to give it its full name, Biofabrication Training for Future Manufacturing. The parties involved in this world-first offering are:

• Queensland University of Technology (Australia)
• University of Woollongong (Australia)
• University Medical Center Utrecht (The Netherlands)
• Julius Maximilian University of Würzburg (Germany)

The course will be supported financially by the European Union and the Australian Government.

“The University of Würzburg has had outstanding expertise in the field of 3D printing of human tissue and in tissue engineering for some time now,” says Professor Jürgen Groll. Groll has been Chairman of the Department for Functional Materials in Medicine and Dentistry at Würzburg since August 2010.

One of his areas of expertise is the production of extremely fine threads made from biocompatible polymers, which are spun into nets that serve as implants. Using a technology that is currently unique across Europe, which is known as melt electrospinning writing, Groll is able to direct a polymer melt through the nozzle of a kind of inkjet printer and spread it on a substrate, generating any desired structure.

Professor Paul Dalton, who is largely organizing the program, is one of the leading pioneers in the field of melt electrospinning writing. He developed and has since advanced this technology in his laboratory at the Institute of Health and Biomedical Innovation at Queensland University of Technology. He will help run the new Master’s degree program for the University of Würzburg as well.

The new Master’s degree program

The four universities involved will each admit ten students to the Master’s course. They will complete around half of their studies in Australia and around half in Europe. At the end, they will receive an international Master’s degree both in Australia and in Europe.

“Biofabrication is a research field that includes many disciplines,” says Paul Dalton. Anyone who wants to work in this field should have good knowledge of subjects like chemistry, physics, biology, medicine, robotics, and information technology. Accordingly, graduates in these subjects can apply for a place on the new degree program. A course awaits them that will place a strong emphasis on research with a high proportion of laboratory work. Over the four semesters they will conduct biofabrication research at the top laboratories in Europe and Australia, work with the leading experts, and establish international contacts in the process.

“Biofabrication needs researchers with broad-based knowledge and offers a career option for students with a general interest in science. The graduates of this program will be specialists sought after internationally,” Dalton promises. Thanks to their training they will be capable of “leading this exciting revolution in medicine – a revolution that will be increasingly important for an aging society.”


Prof. Dr. Jürgen Groll, T: +49 (0)931 - 201 73610;

Prof. Dr. Paul Dalton,

Weitere Informationen:

Gunnar Bartsch | idw - Informationsdienst Wissenschaft

Further reports about: biocompatible biomaterials breast damaged electrospinning nerves replacement

More articles from Life Sciences:

nachricht Billions of juvenile fish under the Arctic sea ice
12.10.2015 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Indications of spontaneous formation of precursor proteins
12.10.2015 | Universität Stuttgart

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Siemens to build light rail vehicles for cities in the US

12.10.2015 | Press release

Siemens to add an additional 173 megawatts to Clyde onshore wind farm in Scotland

12.10.2015 | Press release

Scientists paint quantum electronics with beams of light

12.10.2015 | Physics and Astronomy

More VideoLinks >>>