Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human tissue from a 3D printer

16.05.2014

Early May saw the official launch of the world’s first international Master’s degree program in “biofabrication”. Participating in the program are universities from Australia, the Netherlands, and Germany. The German representative is the University of Würzburg.

It sounds a bit like science fiction: Accident victims receive a replacement for their destroyed bones that is an exact fit for the damaged site. The material comes from a 3D printer and was built up there layer by layer using special biomaterials subsequently colonized by cells belonging to the patient.

But it is not just bones; muscles, nerves, and skin can also be made by the printer to match each patient perfectly. Because the implant was constructed from the body’s own cells, the body does not reject it; the immune system does not have to be suppressed with drugs.

In actual fact, this scenario has been a reality for quite some time now – at least when it comes to healing damaged bone. But scientists are confident that in a few years they will be in a position to use 3D technology to help reconstruct breast tissue for women after breast cancer surgery, for example, or even to produce entire organs.

This coming winter semester, a new international Master’s degree program will start that will focus on precisely this area of research: BIOFAB or, to give it its full name, Biofabrication Training for Future Manufacturing. The parties involved in this world-first offering are:

• Queensland University of Technology (Australia)
• University of Woollongong (Australia)
• University Medical Center Utrecht (The Netherlands)
• Julius Maximilian University of Würzburg (Germany)

The course will be supported financially by the European Union and the Australian Government.

“The University of Würzburg has had outstanding expertise in the field of 3D printing of human tissue and in tissue engineering for some time now,” says Professor Jürgen Groll. Groll has been Chairman of the Department for Functional Materials in Medicine and Dentistry at Würzburg since August 2010.

One of his areas of expertise is the production of extremely fine threads made from biocompatible polymers, which are spun into nets that serve as implants. Using a technology that is currently unique across Europe, which is known as melt electrospinning writing, Groll is able to direct a polymer melt through the nozzle of a kind of inkjet printer and spread it on a substrate, generating any desired structure.

Professor Paul Dalton, who is largely organizing the program, is one of the leading pioneers in the field of melt electrospinning writing. He developed and has since advanced this technology in his laboratory at the Institute of Health and Biomedical Innovation at Queensland University of Technology. He will help run the new Master’s degree program for the University of Würzburg as well.

The new Master’s degree program

The four universities involved will each admit ten students to the Master’s course. They will complete around half of their studies in Australia and around half in Europe. At the end, they will receive an international Master’s degree both in Australia and in Europe.

“Biofabrication is a research field that includes many disciplines,” says Paul Dalton. Anyone who wants to work in this field should have good knowledge of subjects like chemistry, physics, biology, medicine, robotics, and information technology. Accordingly, graduates in these subjects can apply for a place on the new degree program. A course awaits them that will place a strong emphasis on research with a high proportion of laboratory work. Over the four semesters they will conduct biofabrication research at the top laboratories in Europe and Australia, work with the leading experts, and establish international contacts in the process.

“Biofabrication needs researchers with broad-based knowledge and offers a career option for students with a general interest in science. The graduates of this program will be specialists sought after internationally,” Dalton promises. Thanks to their training they will be capable of “leading this exciting revolution in medicine – a revolution that will be increasingly important for an aging society.”

Contact

Prof. Dr. Jürgen Groll, T: +49 (0)931 - 201 73610; office@fmz.uni-wuerzburg.de

Prof. Dr. Paul Dalton, daltonlab@gmail.com

Weitere Informationen:

http://www.biofabdegree.net

Gunnar Bartsch | idw - Informationsdienst Wissenschaft

Further reports about: biocompatible biomaterials breast damaged electrospinning nerves replacement

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>