Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human stem cells transformed into key neurons lost in Alzheimer's

04.03.2011
Discovery may lead to new drugs and neuron transplantation for Alzheimer's

Northwestern Medicine researchers for the first time have transformed a human embryonic stem cell into a critical type of neuron that dies early in Alzheimer's disease and is a major cause of memory loss.

This new ability to reprogram stem cells and grow a limitless supply of the human neurons will enable a rapid wave of drug testing for Alzheimer's disease, allow researchers to study why the neurons die and could potentially lead to transplanting the new neurons into people with Alzheimer's.

The paper will be published March 4 in the journal Stem Cells.

These critical neurons, called basal forebrain cholinergic neurons, help the hippocampus retrieve memories in the brain. In early Alzheimer's, the ability to retrieve memories is lost, not the memories themselves. There is a relatively small population of these neurons in the brain, and their loss has a swift and devastating effect on the ability to remember.

"Now that we have learned how to make these cells, we can study them in a tissue culture dish and figure out what we can do to prevent them from dying," said senior study author Jack Kessler, M.D., chair of neurology and the Davee Professor of Stem Cell Biology at Northwestern University Feinberg School of Medicine and a physician at Northwestern Memorial Hospital.

The lead author of the paper is Christopher Bissonnette, a former doctoral student in neurology who labored for six years in Kessler's lab to crack the genetic code of the stem cells to produce the neurons. His research was motivated by his grandfather's death from Alzheimer's.

"This technique to produce the neurons allows for an almost infinite number of these cells to be grown in labs, allowing other scientists the ability to study why this one population of cells selectively dies in Alzheimer's disease," Bissonnette said.

The ability to make the cells also means researchers can quickly test thousands of different drugs to see which ones may keep the cells alive when they are in a challenging environment. This rapid testing technique is called high-throughput screening.

Kessler and Bissonnette demonstrated the newly produced neurons work just like the originals. They transplanted the new neurons into the hippocampus of mice and showed the neurons functioned normally. The neurons produced axons, or connecting fibers, to the hippocampus and pumped out acetylcholine, a chemical needed by the hippocampus to retrieve memories from other parts of the brain.

Human skin cells transformed into stem cells and then neurons

In new, unpublished research, Northwestern Medicine scientists also have discovered a second novel way to make the neurons. They made human embryonic stem cells (called induced pluripotent stem cells) from human skin cells and then transformed these into the neurons.

Scientists made these stem cells and neurons from skin cells of three groups of people: Alzheimer's patients, healthy patients with no family history of Alzheimer's, and healthy patients with an increased likelihood of developing the disease due to a family history of Alzheimer's because of genetic mutations or unknown reasons.

"This gives us a new way to study diseased human Alzheimer's cells," Kessler said. "These are real people with real disease. That's why it's exciting."

Researcher motivated by his grandfather's Alzheimer's disease

Bissonnette's persistence in the face of often frustrating research was fueled by the childhood memory of watching his grandfather die from Alzheimer's.

"I watched the disease slowly and relentlessly destroy his memory and individuality, and I was powerless to help him," Bissonnette recalled. "That drove me to become a scientist. I wanted to discover new treatments to reverse the damage caused by Alzheimer's disease."

"My goal was to make human stem cells become new healthy replacement cells so that they could one day be transplanted into a patient's brain, helping their memory function again," he said.

Bissonnette had to grow and test millions of cells to figure out how to turn on the exact sequence of genes to transform the stem cell into the cholinergic neuron.

"A stem cell has the potential to become virtually any cell in the body, from a heart cell to a layer of skin," he explained. "Its development is caused by a cascade of things that slowly bump it into a final cell type."

But it wasn't enough just to develop the neurons. Bissonnette then had to learn how to stabilize them so they lived for at least 20 days in order to prove they were the correct cells.

"Since this was brand new research, people didn't know what kind of tissue culture mature human neurons would like to live in," he said. "Once we figured it out, they could live indefinitely."

The research was supported by the National Institutes of Health.

NORTHWESTERN NEWS: www.northwestern.edu/newscenter/

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>