Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Human stem cells promote healing of diabetic ulcers

Circulation Research paper

Treatment of chronic wounds is a continuing clinical problem and socio-economic burden with diabetic foot ulcers alone costing the NHS £300 million a year.

Scientists in Bristol have found that human foetal stem cells can effectively be used to treat back leg ischaemic ulcers in a model of type 1 diabetes.

The researchers also found the culture in which the stem cells had been grown mimicked the wound-healing ability of the cells, suggesting that they could be used as a "factory" of wound-healing substances. Alternatively, the active ingredients in the culture, once identified, could be used instead; this would avoid the ethical concerns of using human foetal stem cells.

In humans, diabetic patients with ischaemic foot ulcers have the worst outcome of all chronic skin wounds, with higher amputation and mortality rates than patients carrying non-ischaemic ulcers. Topical gels containing single growth factors have recently been used with some success in non-ischaemic ulcers, but have been unsuccessful in ischaemic ulcers, which are also resistant to other conventional treatment. Ischaemia results when the blood supply to a tissue is greatly reduced or stopped - this can occur in diabetes since it can also cause impaired blood flow in patients.

The healing activity of stem cells is recognised for their ability to separate into the various component cells of injured tissues, as well as to discharge growth factors that may encourage the formation of new blood vessels in the patient.

Paolo Madeddu, Professor of Experimental Cardiovascluar Medicine and colleagues at the Bristol Heart Institute, previously used stem cells in models of back leg ischaemia, showing that foetal stem cells could be more therapeutically effective than adult stem cells.

Foetal stem cells possess a better ability to multiply and to graft onto host tissue, and to separate into other cell types to replace those in the damaged tissue. The group led by Bristol University's Professor Madeddu have found that foetal stem cells accelerate the closure of ischaemic diabetic ulcers, while stem cells from blood of adult donors are ineffective.

Professor Madeddu, commenting on the research, said: "This is the first study to demonstrate the healing capacity of local therapy with CD133+ stem cells in a model of diabetic ischaemic foot ulcer. The foetus-derived cells would be difficult to obtain for therapeutic applications. However, the finding that conditioned culture is also effective in stimulating wound healing may have important implications for the cure of the ischaemic complications of diabetes.

"Foetal CD133+ cells might be used in the future as a "factory" of therapeutic substances. Alternatively, synthetic replica of the conditioned medium could be produced to obviate ethical concerns surrounding the direct use of foetal stem cells."

Karen Addington, Chief Executive of Juvenile Diabetes Research Foundation (JDRF), added: "Chronic wounds and diabetic foot ulcers are serious long-term complications of type 1 diabetes. Because of the difficulties involved in managing type 1 diabetes, people living with the condition are at an increased risk of requiring a non-traumatic limb amputation. Although more work needs to be done before we can begin to think about potential new treatments, this research represents a useful way to help identify new strategies for dealing with type 1 diabetes."

The researchers discovered that a particular type of stem cell – CD133+ cells (derived from human foetal aorta) promoted blood vessel formation in order to salvage the diabetic limb. Three days following the graft consisting of collagen plus CD133+ cells, hardly any CD133+ cells were detected in the ischaemic diabetic ulcer – indicating that transplanted cells had done their task in the very first days after transplantation possibly by boosting the generation of new vessels through an indirect mechanism.

They found that the CD133+ cells released large amount of growth factors and cytokines endowed of pro-angiogenic and pro-survival potential. To confirm the importance of these released factors, Professor Madeddu and colleagues have grown the CD133+ cells in vitro, and then used the "conditioned" culture to reproduce the effects on wound healing and angiogenesis. These additional experiments confirmed that wound healing and angiogenesis are equally benefited either by giving stem cells or the stem cells' released product.

In the attempt to explain which component of the healing cocktail were really important, they withdrew likely candidates one by one by blocking antibodies. Interestingly, they found that the vascular endothelial growth factor A (VEFG-A) and some interleukins were the crucial factors accounting for the healing effect of transplanted stem cells.

Importantly, VEGF-A was recognized to be the responsible for reactivation of foetal genes, belonging to the Wingless gene family, in the wounded tissue. Withdrawal of wingless gene products also prohibited the beneficial action of conditioned medium on the wound closure and reparative angiogenesis.

This discovery provides a new perspective in the use of foetal stem cells. It is known that wounds heal so well in foetuses that no scar can be visible at birth. It is therefore possible that, when foetal stem cells are transplanted onto diabetic ulcers, they reactivate a foetal program in the recipient to allow those adult ulcers to repair as efficiently as foetal wounds do.

Joanne Fryer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>