Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human stem cells promote healing of diabetic ulcers

22.04.2009
Circulation Research paper

Treatment of chronic wounds is a continuing clinical problem and socio-economic burden with diabetic foot ulcers alone costing the NHS £300 million a year.

Scientists in Bristol have found that human foetal stem cells can effectively be used to treat back leg ischaemic ulcers in a model of type 1 diabetes.

The researchers also found the culture in which the stem cells had been grown mimicked the wound-healing ability of the cells, suggesting that they could be used as a "factory" of wound-healing substances. Alternatively, the active ingredients in the culture, once identified, could be used instead; this would avoid the ethical concerns of using human foetal stem cells.

In humans, diabetic patients with ischaemic foot ulcers have the worst outcome of all chronic skin wounds, with higher amputation and mortality rates than patients carrying non-ischaemic ulcers. Topical gels containing single growth factors have recently been used with some success in non-ischaemic ulcers, but have been unsuccessful in ischaemic ulcers, which are also resistant to other conventional treatment. Ischaemia results when the blood supply to a tissue is greatly reduced or stopped - this can occur in diabetes since it can also cause impaired blood flow in patients.

The healing activity of stem cells is recognised for their ability to separate into the various component cells of injured tissues, as well as to discharge growth factors that may encourage the formation of new blood vessels in the patient.

Paolo Madeddu, Professor of Experimental Cardiovascluar Medicine and colleagues at the Bristol Heart Institute, previously used stem cells in models of back leg ischaemia, showing that foetal stem cells could be more therapeutically effective than adult stem cells.

Foetal stem cells possess a better ability to multiply and to graft onto host tissue, and to separate into other cell types to replace those in the damaged tissue. The group led by Bristol University's Professor Madeddu have found that foetal stem cells accelerate the closure of ischaemic diabetic ulcers, while stem cells from blood of adult donors are ineffective.

Professor Madeddu, commenting on the research, said: "This is the first study to demonstrate the healing capacity of local therapy with CD133+ stem cells in a model of diabetic ischaemic foot ulcer. The foetus-derived cells would be difficult to obtain for therapeutic applications. However, the finding that conditioned culture is also effective in stimulating wound healing may have important implications for the cure of the ischaemic complications of diabetes.

"Foetal CD133+ cells might be used in the future as a "factory" of therapeutic substances. Alternatively, synthetic replica of the conditioned medium could be produced to obviate ethical concerns surrounding the direct use of foetal stem cells."

Karen Addington, Chief Executive of Juvenile Diabetes Research Foundation (JDRF), added: "Chronic wounds and diabetic foot ulcers are serious long-term complications of type 1 diabetes. Because of the difficulties involved in managing type 1 diabetes, people living with the condition are at an increased risk of requiring a non-traumatic limb amputation. Although more work needs to be done before we can begin to think about potential new treatments, this research represents a useful way to help identify new strategies for dealing with type 1 diabetes."

The researchers discovered that a particular type of stem cell – CD133+ cells (derived from human foetal aorta) promoted blood vessel formation in order to salvage the diabetic limb. Three days following the graft consisting of collagen plus CD133+ cells, hardly any CD133+ cells were detected in the ischaemic diabetic ulcer – indicating that transplanted cells had done their task in the very first days after transplantation possibly by boosting the generation of new vessels through an indirect mechanism.

They found that the CD133+ cells released large amount of growth factors and cytokines endowed of pro-angiogenic and pro-survival potential. To confirm the importance of these released factors, Professor Madeddu and colleagues have grown the CD133+ cells in vitro, and then used the "conditioned" culture to reproduce the effects on wound healing and angiogenesis. These additional experiments confirmed that wound healing and angiogenesis are equally benefited either by giving stem cells or the stem cells' released product.

In the attempt to explain which component of the healing cocktail were really important, they withdrew likely candidates one by one by blocking antibodies. Interestingly, they found that the vascular endothelial growth factor A (VEFG-A) and some interleukins were the crucial factors accounting for the healing effect of transplanted stem cells.

Importantly, VEGF-A was recognized to be the responsible for reactivation of foetal genes, belonging to the Wingless gene family, in the wounded tissue. Withdrawal of wingless gene products also prohibited the beneficial action of conditioned medium on the wound closure and reparative angiogenesis.

This discovery provides a new perspective in the use of foetal stem cells. It is known that wounds heal so well in foetuses that no scar can be visible at birth. It is therefore possible that, when foetal stem cells are transplanted onto diabetic ulcers, they reactivate a foetal program in the recipient to allow those adult ulcers to repair as efficiently as foetal wounds do.

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>