Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human stem cells from fat tissue fuse with rat heart cells and beat

01.03.2011
New research in the FASEB Journal suggests that intraspecies communication exists on a cellular level, as demonstrated by rats communicating with human stem cells in the same genetic language

If Dr. Doolittle is famous for talking to animals, then here's a story that might make him hold his tongue: According to new research published online in The FASEB Journal (http://www.fasebj.org), scientists have successfully fused human stem cells derived from subcutaneous adipose (fat) tissue with muscle cells from rat hearts. Not only did these cells "talk" to form new muscle cells altogether, but they actually beat.

"Recovery of regenerative cells located in the stromal vascular fraction of a patient's own subcutaneous tissue is relatively simple and can be used for self-healing," said Christopher Alt, Ph.D., a researcher involved in the work from the Department of Molecular Pathology at the University of Texas in Houston. "A patient's quality of life can be improved by application of those recovered regenerative cells to the heart, as well as to bone, tendons, non-healing wounds and joints."

Using newborn rats, scientists studied the combination of rat heart muscle cells (cardiomyocytes) and human adipose (fat) stem cells derived from human subcutaneous adipose tissue. They found that the two fused and formed new heart muscle cells with several nuclei. When kept in a culture environment, these cells beat. These new cells exhibited an ability to compensate for a loss of cardiomyocytes as following a myocardial infarction, via fusion with cardiomyocytes. Furthermore, this study shows that contrary to previous findings suggesting that genetic modification of certain embryonic genes in adult stem cells is required as a prerequisite for turning into heart cells, the human stem cells used in this study were not genetically modified.

"Much work is still ahead before this method can be applied to humans, but the hope is that this technique might eventually make heart transplants unnecessary," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "This study not only shows the power of stem cell fusion technology, but also that cardiac regeneration is on the horizon."

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrates its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Roxana Metzele, Christopher Alt, Xiaowen Bai, Yasheng Yan, Zhi Zhang, Zhizhong Pan, Michael Coleman, Jody Vykoukal, Yao-Hua Song, and Eckhard Alt

Human adipose tissue-derived stem cells exhibit proliferation potential and spontaneous rhythmic contraction after fusion with neonatal rat cardiomyocytes

FASEB J March 2011 25:830-839; doi:10.1096/fj.09-153221 ; http://www.fasebj.org/content/25/3/830.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>