Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Human protein factories in 3D - Insights into the interior of human cells at the nano level

Due to cell-biological research, it is already known which components of the cell are responsible for the production of proteins. But so far it has not been explored in detail how these protein factories (ribosomes) are organized inside the cell.

Recently, scientists at the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich, Germany, succeeded in mapping the inner life of an intact human cell three-dimensionally via cryo-electron tomography. In this way they were able to show where the ribosomes are located in the cell and how they are arranged. In the past, this was only possible with bacterial cells. The results have now been published in Molecular Cell.

Human cells are very complex entities with many different components. A very important cellular component are the ribosomes: As the protein factories of the cell, they are responsible for the production of proteins (protein synthesis). The blueprint provides our heritable information, the DNA.

Because of their importance for protein synthesis, the ribosomes have often been subject of structural research. Until now, the scientists could only look at individual, isolated ribosomes. But in the living cell, ribosomes usually appear lined up like pearls on a string, in so-called polyribosomes. An isolated view is not enough to understand completely how the protein production proceeds inside the cell and how it is embedded in the complex cellular structures and processes. Thus it is necessary to map and to investigate the ribosomes in their “natural environment”, in the interior of the cell. This permits cryo-electron tomography.

With this method, which was mainly developed in the department of Molecular Structural Biology, headed by Wolfgang Baumeister, three-dimensional cellular structures can be mapped and examined. The cell is sort of quick-frozen, so that its spatial structure remains and its properties are not modified. Then the scientists use the electron microscope to record twodimensional pictures of the cell from different perspectives. From these pictures they finally reconstruct a three-dimensional image. By using this method, the MPIB scientists were able to create a three-dimensional map of an intact human cell for the first time. This is the continuation of former work, when the team around Wolfgang Baumeister and F.-Ulrich Hartl already managed to analyze the spatial arrangement of polyribosomes in the bacterium E. coli (Brandt et al., Cell 2009) and of inactivated ribosomes in a whole E. coli cell (Ortiz et al., JCB


Now the scientists discovered how the ribosomes are positioned inside the human cell: Their arrangement is clearly non-random but rather makes sure that newly originated, still unfolded proteins keep a big distance between each other. “We could already observe a similar positioning in bacterial cells which suggests that the ribosomes of all human beings are arranged in almost the same manner”, explains Florian Brandt, scientist at the MPIB. “This spatial organization of the ribosomes could probably have the aim to inhibit the aggregation and misfolding of newly originated proteins.”

The work of the MPIB scientists is another important step for cell biology, because it helps to better understand the distribution of cellular components and the spatial organization of the whole cell much better. “In the future it could also be interesting”, says Brandt, “how the organization of ribosomes changes in aging and sick cells and how these changes affect the total efficiency of protein production and folding.” [UD]

Original Publication:
Florian Brandt, Lars-Anders Carlson, F.-Ulrich Hartl, Wolfgang Baumeister and Kay Grünewald: The three-dimensional organization of polyribosomes in intact human cells. Molecular Cell, August 27, 2010.
Prof. Dr. Wolfgang Baumeister
Molecular Structural Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried, Germany
Dr. Kay Grünewald
The Division of Structural Biology
University of Oxford
The Henry Wellcome Building for Genomic Medicine
Roosevelt Drive
Oxford, OX3 7BN
United Kingdom
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried, Germany
Phone ++49/89-8578-2824

Anja Konschak | idw
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>