Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human protein factories in 3D - Insights into the interior of human cells at the nano level

10.09.2010
Due to cell-biological research, it is already known which components of the cell are responsible for the production of proteins. But so far it has not been explored in detail how these protein factories (ribosomes) are organized inside the cell.

Recently, scientists at the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich, Germany, succeeded in mapping the inner life of an intact human cell three-dimensionally via cryo-electron tomography. In this way they were able to show where the ribosomes are located in the cell and how they are arranged. In the past, this was only possible with bacterial cells. The results have now been published in Molecular Cell.

Human cells are very complex entities with many different components. A very important cellular component are the ribosomes: As the protein factories of the cell, they are responsible for the production of proteins (protein synthesis). The blueprint provides our heritable information, the DNA.

Because of their importance for protein synthesis, the ribosomes have often been subject of structural research. Until now, the scientists could only look at individual, isolated ribosomes. But in the living cell, ribosomes usually appear lined up like pearls on a string, in so-called polyribosomes. An isolated view is not enough to understand completely how the protein production proceeds inside the cell and how it is embedded in the complex cellular structures and processes. Thus it is necessary to map and to investigate the ribosomes in their “natural environment”, in the interior of the cell. This permits cryo-electron tomography.

With this method, which was mainly developed in the department of Molecular Structural Biology, headed by Wolfgang Baumeister, three-dimensional cellular structures can be mapped and examined. The cell is sort of quick-frozen, so that its spatial structure remains and its properties are not modified. Then the scientists use the electron microscope to record twodimensional pictures of the cell from different perspectives. From these pictures they finally reconstruct a three-dimensional image. By using this method, the MPIB scientists were able to create a three-dimensional map of an intact human cell for the first time. This is the continuation of former work, when the team around Wolfgang Baumeister and F.-Ulrich Hartl already managed to analyze the spatial arrangement of polyribosomes in the bacterium E. coli (Brandt et al., Cell 2009) and of inactivated ribosomes in a whole E. coli cell (Ortiz et al., JCB

2010).

Now the scientists discovered how the ribosomes are positioned inside the human cell: Their arrangement is clearly non-random but rather makes sure that newly originated, still unfolded proteins keep a big distance between each other. “We could already observe a similar positioning in bacterial cells which suggests that the ribosomes of all human beings are arranged in almost the same manner”, explains Florian Brandt, scientist at the MPIB. “This spatial organization of the ribosomes could probably have the aim to inhibit the aggregation and misfolding of newly originated proteins.”

The work of the MPIB scientists is another important step for cell biology, because it helps to better understand the distribution of cellular components and the spatial organization of the whole cell much better. “In the future it could also be interesting”, says Brandt, “how the organization of ribosomes changes in aging and sick cells and how these changes affect the total efficiency of protein production and folding.” [UD]

Original Publication:
Florian Brandt, Lars-Anders Carlson, F.-Ulrich Hartl, Wolfgang Baumeister and Kay Grünewald: The three-dimensional organization of polyribosomes in intact human cells. Molecular Cell, August 27, 2010.
Contact:
Prof. Dr. Wolfgang Baumeister
Molecular Structural Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried, Germany
E-mail: baumeist@biochem.mpg.de
Dr. Kay Grünewald
The Division of Structural Biology
University of Oxford
The Henry Wellcome Building for Genomic Medicine
Roosevelt Drive
Oxford, OX3 7BN
United Kingdom
E-mail: kay@strubi.ox.ac.uk
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried, Germany
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | idw
Further information:
http://www.biochem.mpg.de/en/news/index.html
http://www.biochem.mpg.de/en/rd/baumeister/index.html
http://www.biochem.mpg.de

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>