Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human use heel first gait because it is efficient for walking

12.02.2010
Most running mammals totter along on their toes. In fact, toe running is far more efficient than landing heel first like humans. Yet when it comes to long distance endurance running, humans are some of the best-adapted animals for clocking up the miles, all be it inefficiently.

So, why have we stuck with our inefficient heel first footfall pattern when the rest of our bodies are honed for marathon running? This paradox puzzled Nadja Schilling and Christoph Anders from the Jena University, Germany, and Christopher Cunningham and David Carrier from the University of Utah, USA, until they began to wonder whether our distinctive heel first gait, inherited from our ape forefathers, might be an advantage when we walk.

The team put young healthy volunteers through their paces to find out why we walk and run heel first and publish their results on 12 February 2010 in The Journal of Experimental Biology at http://jeb.biologists.org.

Measuring the amount of oxygen consumed as their human subjects walked, the team asked the volunteers to walk in one of three different ways: normally, with the heel contacting the ground first; toes first, with the heel slightly raised so that it didn't contact the ground; and up on tip-toes. Then the scientists asked the athletes to repeat the experiments while running heel first and with their heels slightly raised. Calculating the amount of energy required to run and walk, the team found that walking with the heel slightly raised costs 53% more energy than walking heel first, and walking on tip-toe was even less economical. However, there was no difference between the runners' efficiencies when they ran with flat feet and up on their toes.

Our 'heel first' gait makes us incredibly efficient walkers, while both postures are equally efficient for runners. Human walkers burn roughly 70% less energy than human runners when covering the same distance. However, this efficiency would be completely wiped out if we switched to walking on our toes. 'Our ability to walk economically may largely be the result of our plantigrade [heel first] posture,' says Carrier.

But why is heel walking so much more efficient than walking on our toes? To find out, Carrier and his colleagues asked volunteers to run and walk at various speeds in the three postures while recording electrical activity in their muscles to see if the heel first walkers were saving energy by using their muscles differently from toe first walkers. The team also measured the volunteers' metabolic cost of standing on their toes, to find out if increasing stability saved energy, and the forces exerted by the ground on the volunteers' bodies, in case they were reduced in any way that could result in an energy saving.

Analysing the results, the team realised that we lose less energy as our heels collide with the ground than we do when we walk toes first. Landing heel first also allows us to transfer more energy from one step to the next to improve our efficiency, while placing the foot flat on the ground reduces the forces around the ankle (generated by the ground pushing against us), which our muscles have to counteract, resulting in another energy saving.

So we still use our ancestor's heel first gait because it makes us better walkers and Carrier adds, 'Given the great distances hunter-gatherers travel, it is not surprising that humans are economical walkers'.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Cunningham, C. B., Schilling, N., Anders, C. and Carrier, D. R. (2010). The influence of foot posture on the cost of transport in humans. J. Exp. Biol. 213, 790-797.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>