Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The human genome’s breaking points

03.02.2011
Comprehensive catalogue uncovers genetic sequence of large-scale differences between human genomes

A detailed analysis of data from 185 human genomes sequenced in the course of the 1000 Genomes Project, by scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, in collaboration with researchers at the Wellcome Trust Sanger Institute in Cambridge, UK, as well as the University of Washington and Harvard Medical School, both in the USA, has identified the genetic sequence of an unprecedented 28 000 structural variants (SVs) – large portions of the human genome which differ from one person to another. The work, published today in Nature, could help find the genetic causes of some diseases and also begins to explain why certain parts of the human genome change more than others.

The international team of scientists identified over a thousand SVs that disrupt the sequence of one or more genes. These gene-altering mutations may be linked to diseases, so knowing the exact genetic sequence of these variations will help clinical geneticists to narrow down their searches for disease-causing mutations.

“Knowing the exact genetic sequence of SVs and their context in the genome could help find the genetic causes for as-yet unexplained diseases,” says Jan Korbel, who led the research at EMBL: “this may help us understand why some people remain healthy until old age whereas others develop diseases early in their lives.”

This unprecedented catalogue of large-scale genetic variants also sheds light on why some parts of the genome mutate more frequently than others. The scientists found that deletions, where genetic material is lost, and insertions, where it is gained, tend to happen in different places in the genome and through different molecular processes. For instance, large-scale deletions are more likely to occur in regions where DNA often breaks and has to be put back together, as ‘chunks’ of genetic material can be lost in the process.

“We found 51 hotspots where certain SVs, such as large deletions, appear to occur particularly often” Korbel says: “Six of those hotspots are in regions known to be related to genetic conditions such as Miller-Dieker syndrome, a congenital brain disease that can lead to infant death.”

Previous research had already linked SVs – also called copy-number variants – to many genetic conditions, such as colour-blindness, schizophrenia, and certain forms of cancer. However, because of their large size and complex DNA sequence, SVs were difficult to identify. In this study, the researchers overcame these difficulties, developing novel computational approaches that allowed them to pinpoint the exact locations of these large-scale variations in the genome, broadening the potential scope of future disease studies.

“There are many structural variants in everyone’s genomes and they are increasingly being associated with various aspects of human health” says Charles Lee, a clinical cytogeneticist and associate professor at Harvard Medical School and Brigham and Women’s Hospital, and joint leader of the study: “It is important to be able to identify and comprehensively characterize these genetic variants using state-of-the-art DNA sequencing technologies.”

Data from this study is being made publicly available to the scientific community through the 1000 Genomes Project, an international public-private consortium to build the most detailed map of human genetic variation to date. The 1000 Genomes Project aims to sequence 2500 whole genomes by the end of 2012, resulting, by far, in the largest collection of human genomes to date.

Sonia Furtado
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>