Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The human genome’s breaking points

03.02.2011
Comprehensive catalogue uncovers genetic sequence of large-scale differences between human genomes

A detailed analysis of data from 185 human genomes sequenced in the course of the 1000 Genomes Project, by scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, in collaboration with researchers at the Wellcome Trust Sanger Institute in Cambridge, UK, as well as the University of Washington and Harvard Medical School, both in the USA, has identified the genetic sequence of an unprecedented 28 000 structural variants (SVs) – large portions of the human genome which differ from one person to another. The work, published today in Nature, could help find the genetic causes of some diseases and also begins to explain why certain parts of the human genome change more than others.

The international team of scientists identified over a thousand SVs that disrupt the sequence of one or more genes. These gene-altering mutations may be linked to diseases, so knowing the exact genetic sequence of these variations will help clinical geneticists to narrow down their searches for disease-causing mutations.

“Knowing the exact genetic sequence of SVs and their context in the genome could help find the genetic causes for as-yet unexplained diseases,” says Jan Korbel, who led the research at EMBL: “this may help us understand why some people remain healthy until old age whereas others develop diseases early in their lives.”

This unprecedented catalogue of large-scale genetic variants also sheds light on why some parts of the genome mutate more frequently than others. The scientists found that deletions, where genetic material is lost, and insertions, where it is gained, tend to happen in different places in the genome and through different molecular processes. For instance, large-scale deletions are more likely to occur in regions where DNA often breaks and has to be put back together, as ‘chunks’ of genetic material can be lost in the process.

“We found 51 hotspots where certain SVs, such as large deletions, appear to occur particularly often” Korbel says: “Six of those hotspots are in regions known to be related to genetic conditions such as Miller-Dieker syndrome, a congenital brain disease that can lead to infant death.”

Previous research had already linked SVs – also called copy-number variants – to many genetic conditions, such as colour-blindness, schizophrenia, and certain forms of cancer. However, because of their large size and complex DNA sequence, SVs were difficult to identify. In this study, the researchers overcame these difficulties, developing novel computational approaches that allowed them to pinpoint the exact locations of these large-scale variations in the genome, broadening the potential scope of future disease studies.

“There are many structural variants in everyone’s genomes and they are increasingly being associated with various aspects of human health” says Charles Lee, a clinical cytogeneticist and associate professor at Harvard Medical School and Brigham and Women’s Hospital, and joint leader of the study: “It is important to be able to identify and comprehensively characterize these genetic variants using state-of-the-art DNA sequencing technologies.”

Data from this study is being made publicly available to the scientific community through the 1000 Genomes Project, an international public-private consortium to build the most detailed map of human genetic variation to date. The 1000 Genomes Project aims to sequence 2500 whole genomes by the end of 2012, resulting, by far, in the largest collection of human genomes to date.

Sonia Furtado
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>