Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human genes sing different tunes in different tissues

04.11.2008
Biologists find almost all genes express multiple messenger RNAs

Scientists have long known that it's possible for one gene to produce slightly different forms of the same protein by skipping or including certain sequences from the messenger RNA. Now, an MIT team has shown that this phenomenon, known as alternative splicing, is both far more prevalent and varies more between tissues than was previously believed.

Nearly all human genes, about 94 percent, generate more than one form of their protein products, the team reports in the Nov. 2 online edition of Nature. Scientists' previous estimates ranged from a few percent 10 years ago to 50-plus percent more recently.

"A decade ago, alternative splicing of a gene was considered unusual, exotic … but it turns out that's not true at all — it's a nearly universal feature of human genes," said Christopher Burge, senior author of the paper and the Whitehead Career Development Associate Professor of Biology and Biological Engineering at MIT.

Burge and his colleagues also found that in most cases the mRNA produced depends on the tissue where the gene is expressed. The work paves the way for future studies into the role of alternative proteins in specific tissues, including cancer cells.

They also found that different people's brains often differ in their expression of alternative spliced mRNA isoforms.

Human genes typically contain several "exons," or DNA sequences that code for amino acids, the building blocks of proteins. A single gene can produce multiple protein sequences, depending on which exons are included in the mRNA transcript, which carries instructions to the cell's protein-building machinery.

Two different forms of the same protein, known as isoforms, can have different, even completely opposite functions. For example, one protein may activate cell death pathways while its close relative promotes cell survival.

The researchers found that the type of isoform produced is often highly tissue-dependent. Certain protein isoforms that are common in heart tissue, for example, might be very rare in brain tissue, so that the alternative exon functions like a molecular switch. Scientists who study splicing have a general idea of how tissue-specificity may be achieved, but they have much less understanding of why isoforms display such tissue specificity, Burge said.

Scientists have also observed that cells express different isoforms during embryonic development and at different stages of cellular differentiation. Burge's team is now studying cells at various stages of differentiation to see when different isoforms are expressed.

Isoform switching also occurs in cancer cells. One such switch involves a metabolic enzyme and contributes to cancer cells burning large amounts of glucose and growing more rapidly. Learning more about such switches could lead to potential cancer therapies, Burge said.

Until now, it has been difficult to study isoforms on a genome-wide scale because of the high cost of sequencing and technical issues in discriminating similar mRNA isoforms using microarrays. The team took mRNA samples from 10 types of tissue and five cell lines from a total of 20 individuals, and generated more than 13 billion base pairs of sequence, the equivalent of more than four entire human genomes.

The sequencing was done by researchers at biotech firm Illumina, using a new high-throughput sequencing machine.

Teresa Herbert | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>