Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human brain's most ubiquitous cell cultivated in lab dish

23.05.2011
Pity the lowly astrocyte, the most common cell in the human nervous system.

Long considered to be little more than putty in the brain and spinal cord, the star-shaped astrocyte has found new respect among neuroscientists who have begun to recognize its many functions in the brain, not to mention its role in a range of disorders of the central nervous system.

Now, writing in the current (May 22) issue of the journal Nature Biotechnology, a group led by University of Wisconsin-Madison stem cell researcher Su-Chun Zhang reports it has been able to direct embryonic and induced human stem cells to become astrocytes in the lab dish.

The ability to make large, uniform batches of astrocytes, explains Zhang, opens a new avenue to more fully understanding the functional roles of the brain's most commonplace cell, as well as its involvement in a host of central nervous system disorders ranging from headaches to dementia. What's more, the ability to culture the cells gives researchers a powerful tool to devise new therapies and drugs for neurological disorders.

"Not a lot of attention has been paid to these cells because human astrocytes have been hard to get," says Zhang, a researcher at UW-Madison's Waisman Center and a professor of neuroscience in the UW-Madison School of Medicine and Public Health. "But we can make billions or trillions of them from a single stem cell."

Although astrocytes have gotten short shrift from science compared to neurons, the large filamentous cells that process and transmit information, scientists are turning their attention to the more common cells as their roles in the brain become better understood. There are a variety of astrocyte cell types and they perform such basic housekeeping tasks as helping to regulate blood flow, soaking up excess chemicals produced by interacting neurons and controlling the blood-brain barrier, a protective filter that keeps dangerous molecules from entering the brain.

Astrocytes, some studies suggest, may even play a role in human intelligence given that their volume is much greater in the human brain than any other species of animal.

"Without the astrocyte, neurons can't function," Zhang notes. "Astrocytes wrap around nerve cells to protect them and keep them healthy. They participate in virtually every function or disorder of the brain."

The ability to forge astrocytes in the lab has several potential practical outcomes, according to Zhang. They could be used as screens to identify new drugs for treating diseases of the brain, they can be used to model disease in the lab dish and, in the more distant future, it may be possible to transplant the cells to treat a variety of neurological conditions, including brain trauma, Parkinson's disease and spinal cord injury. It is possible that astrocytes prepared for clinical use could be among the first cells transplanted to intervene in a neurological condition as the motor neurons affected by the fatal amyotrophic lateral sclerosis, also known as Lou Gehrig's disease, are swathed in astrocytes.

"With an injury or neurological condition, neurons in the brain have to work harder, and doing so they make more neurotransmitters," chemicals that in excess can be toxic to other cells in the brain, Zhang says.

"One idea is that it may be possible to rescue motor neurons by putting normal, healthy astrocytes in the brain," according to Zhang. "These cells are really useful as a therapeutic target."

The technology developed by the Wisconsin group lays a foundation to make all the different species of astrocytes. What's more, it is possible to genetically engineer them to mimic disease so that previously inaccessible neurological conditions can be studied in the lab.

In addition to Zhang, co-authors of the new Nature Biotechnology paper include Robert Krencik, Jason Weick and Zhijian Zhang, all of UW-Madison, and Yan Liu of Fudan University Shanghai Medical School. The work was supported by the ALS Foundation, the National Institute of Neurological Disorders and Stroke, the National Multiple Sclerosis Society, the Bleser Family Foundation and the Busta Family Foundation.

An image is available for download at http://www.news.wisc.edu/newsphotos/astrocytes.html

Su-Chun Zhang | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>