Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hulk smash? Maybe not anymore: scientists block excess aggression in mice

20.06.2012
Understanding the biological basis of violent outbursts in mice could lead to treatments for antisocial and aggressive behavior

Pathological rage can be blocked in mice, researchers have found, suggesting potential new treatments for severe aggression, a widespread trait characterized by sudden violence, explosive outbursts and hostile overreactions to stress.

In a study appearing today in the Journal of Neuroscience, researchers from the University of Southern California and Italy identify a critical neurological factor in aggression: a brain receptor that malfunctions in overly hostile mice. When the researchers shut down the brain receptor, which also exists in humans, the excess aggression completely disappeared.

The findings are a significant breakthrough in developing drug targets for pathological aggression, a component in many common psychological disorders including Alzheimer's disease, autism, bipolar disorder and schizophrenia.

"From a clinical and social point of view, reactive aggression is absolutely a major problem," said Marco Bortolato, lead author of the study and research assistant professor of pharmacology and pharmaceutical sciences at the USC School of Pharmacy. "We want to find the tools that might reduce impulsive violence."

A large body of independent research, including past work by Bortolato and senior author Jean Shih, USC University Professor and Boyd & Elsie Welin Professor in Pharmacology and Pharmaceutical Sciences at USC, has identified a specific genetic predisposition to pathological aggression: low levels of the enzyme monoamine oxidase A (MAO A). Both male humans and mice with congenital deficiency of the enzyme respond violently in response to stress.

"The same type of mutation that we study in mice is associated with criminal, very violent behavior in humans. But we really didn't understand why that it is," Bortolato said.

Bortolato and Shih worked backwards to replicate elements of human pathological aggression in mice, including not just low enzyme levels but also the interaction of genetics with early stressful events such as trauma and neglect during childhood.

"Low levels of MAO A are one basis of the predisposition to aggression in humans. The other is an encounter with maltreatment, and the combination of the two factors appears to be deadly: it results consistently in violence in adults," Bortolato said.

The researchers show that in excessively aggressive rodents that lack MAO A, high levels of electrical stimulus are required to activate a specific brain receptor in the pre-frontal cortex. Even when this brain receptor does work, it stays active only for a short period of time.

"The fact that blocking this receptor moderates aggression is why this discovery has so much potential. It may have important applications in therapy," Bortolato said. "Whatever the ways environment can persistently affect behavior — and even personality over the long term — behavior is ultimately supported by biological mechanisms."

Importantly, the aggression receptor, known as NMDA, is also thought to play a key role in helping us make sense of multiple, coinciding streams of sensory information, according to Bortolato.

The researchers are now studying the potential side effects of drugs that reduce the activity of this receptor.

"Aggressive behaviors have a profound socio-economic impact, yet current strategies to reduce these staggering behaviors are extremely unsatisfactory," Bortolato said. "Our challenge now is to understand what pharmacological tools and what therapeutic regimens should be administered to stabilize the deficits of this receptor. If we can manage that, this could truly be an important finding."

Sean Godar, a postdoctoral student in the department of molecular pharmacology and toxicology at the USC School of Pharmacy, was co-lead author of the study. Kevin Chen, a research associate professor at the USC School of Pharmacy, was a co-author on the study. The research was funded by the National Institute of Mental Health of the National Institutes of Health under grant R01MH39085, the National Institute of Child Health and Human Development of the National Institutes of Health under grant R21HD070611, the Boyd and Elsie Welin Professorship help by Shih, and a USC Zumberge Research Individual Grant to Bortolato.

Suzanne Wu | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>