Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


HOXB7 gene promotes tamoxifen resistance

A gene target for drug resistance, a triple-drug cocktail for triple negative breast cancer, and patients' risk for carpal tunnel syndrome are among study highlights scheduled to be presented by Johns Hopkins Kimmel Cancer Center scientists during the 33rd Annual CTRC-AACR San Antonio Breast Cancer Symposium, held Dec. 8-12. The information is embargoed for the time of presentation at the symposium.
(Presentation # PD05-10)
Many postmenopausal women with early-stage breast cancers who initially respond well to tamoxifen become resistant to the drug over time and develop recurrent tumors. Johns Hopkins Kimmel Cancer Center researchers have found that a gene called HOXB7 may be the culprit in tamoxifen resistance.

Taken by mouth, tamoxifen is used at every stage of breast cancer to treat existing tumors and prevent new ones from developing. The drug works only in women whose tumor cells have a protein, called the estrogen receptor, which binds to the estrogen hormone. Tamoxifen binds to this estrogen receptor and blocks estrogen's effect on fueling cancer cells.

In experiments on cancer cells, the scientists found that when the HOXB7 gene is overexpressed, as occurs in many breast cancers, tumors cells became resistant to tamoxifen. Overexpression of HOXB7 results in proteins that interact with a series of other estrogen-activated genes and proteins, including the HER2 gene, known to make breast cancers aggressive. When the scientists knocked out the HOXB7 gene in one group of breast cancer cells, HER2 activation decreased and the cells became more responsive to tamoxifen. The scientists then showed how the HOXB7-HER2 interaction works.

"HOXB7 appears crucial in orchestrating estrogen receptors, HER2 and other receptors that promote aggressive tumor growth in breast cancer cells," says senior author Saraswati Sukumar, PhD, professor of oncology and co-director of the Breast Cancer Program at Johns Hopkins. "Dialing down expression of the HOXB7 gene could stave off tamoxifen resistance."

Though it's not yet evident how to shut down HOXB7, Sukumar says that oncologists could potentially use the drug Herceptin to kill tumors in patients whose HER2 expression increases.

On the Web:
San Antonio Breast Cancer Symposium:

Vanessa Wasta | EurekAlert!
Further information:

Further reports about: Cancer HER2 HOXB7 Hopkins Sukumar breast breast cancer breast cancer cells cancer cells estrogen receptor

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>