Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How well do gray seals hear?

25.03.2014

TiHo researchers investigate the hearing of the marine mammals.

Researchers from the Institute for Terrestrial and Aquatic Wildlife Research of the University of Veterinary Medicine Hannover Foundation (TiHo) are investigating the hearing of gray seals (Halichoerus grypus) under the leadership of Professor Dr. Ursula Siebert and Dr. Andreas Ruser.


With specially adapted in-ear headphones TiHo researchers investigated the hearing of gray seals.

Photo: ITAW

They published the first results in the online specialist magazine Plos one (www.plosone.org). The investigations were financed by the German Federal Agency for Nature Conservation (BfN) in order to increase knowledge about the effects of underwater noise on marine mammals. They are part of a multi-year, extensive BfN research program. The measuring system was supported by Technical Center Army Office 71 of the German Armed Forces.

“We urgently need to learn more about how well and in which frequency range gray seals hear,” says Professor Dr. Ursula Siebert, Head of the institute. “The last scientific publication on this topic dates back to 1975.”

Noise pollution in the sea is continuously increasing: shipping traffic, construction works in the sea, blasting, sound cannons to search for crude oil or the use of sonar devices stress the animals. The scientists need precise data about the hearing of gray seals in order to assess the effects of underwater noise on the animals. This seal species, along with porpoises and seals, is among the most common marine mammals in the North and Baltic Seas.

For their current study, the researchers investigated six gray seals from rearing stations. Dr. Andreas Ruser explains: “Basically, we proceeded according to the principle which we know from ear specialists.”

In contrast to humans, however, animals cannot say when they hear a tone, so the challenge for the researchers was to find out whether the seals perceive a tone or not. The researchers sedated the gray seals shortly before they were to be released into the wild. Then they played tones to them and measured the nerve impulses transmitted from the cochlea to the auditory nerve. As soon as the animals woke up again, the researchers were able to release them into the wild.

Since seals close their external ear channel when sedated, it is impossible to treat them with ultrasound using speakers. “We therefore used specially adapted in-ear headphones,” explains Ruser. The researchers found out that gray seals, similar to humans, can hear in a frequency range between 1,000 and 20,000 hertz and are much more sensitive than previously known in a range higher than 3,000 hertz.

Furthermore, there are indications not yet confirmed that gray seals can also hear above 20,000 hertz. “Using this method, however, we can only prepare a so-called air audio diagram for wild animals, which means that measurements can only be carried out in the air. Sound waves are transmitted in a different manner under water. We therefore assume that gray seals hear even higher frequencies under water.”

Next, Ruser and his colleagues want to examine this difference with gray seals trained and held in human hands at the University of Southern Denmark, Odense: The gray seals must therefore “learn” to signalize whether they hear something, first above and then under water. The seals are thus to be trained to show a defined reaction as soon as they hear a tone. This training is carried out in the pool of the respective seal facility.

The tones are then played for the gray seals under controlled conditions using headphones or loudspeaker in the air and loudspeaker or hydrophones under water. “We are looking forward to the further results, particularly with regard to the hearing of the seals under water,” says Professor Siebert. “We are hoping for reliable evidence that shows to what extent seals are affected by the increasing noise pollution in the North and Baltic Seas.”

Background Information

Gray seals are the biggest wild predators in Germany. They can live up to 35 years. With a length of 230 centimeters and an average weight of 220 kilograms, males are considerably larger than females, which can be up to 180 centimeters in length and may weigh 150 kilograms.

The employees of the Institute for Terrestrial and Aquatic Wildlife Research work in Hannover and at a branch of the TiHo in Büsum in Schleswig-Holstein. The focal points of aquatic wildlife research are basic research, applied research and monitoring. The aim is to investigate the biology and ecology of marine mammals and to assess the influence of humans on animals, their health and their population.

Original Publication

In-air evoked potential audiometry of grey seals (Halichoerus grypus) from the North and Baltic Seas
Andreas Ruser, Michael Dähne, Janne Sundermeyer, Klaus Lucke, Dorian S. Houser, James J. Finneran, Jörg Driver, Iwona Pawliczka, Tanja Rosenberger, Ursula Siebert
Plos one, DOI: 10.1371/journal.pone.0090824

For technical questions, please contact

Dr. Andreas Ruser
University of Veterinary Medicine Hannover Foundation
Institute for Terrestrial and Aquatic Wildlife Research
Phone: +49 511 953-8156
andreas.ruser@tiho-hannover.de

Weitere Informationen:

http://www.tiho-hannover.de/aktuelles-presse/pressemitteilungen/pressemitteilung...

Sonja von Brethorst | idw - Informationsdienst Wissenschaft

Further reports about: BfN Medicine Veterinary Wildlife hear hertz humans mammals seals transmitted underwater

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>