Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the smallest bacterial pathogens outwit host immune defences by stealth mechanisms

20.10.2017

Despite their relatively small genome in comparison to other bacteria, mycoplasmas can cause persistent and often difficult-to-treat infections in humans and animals. An extensive study by researchers from Vetmeduni Vienna has now shown how mycoplasmas escape the immune response despite their minimal “genetic arsenal”. Mycoplasmas “mask” themselves. They use their small genome in such a clever strategic way that they can even compensate for the loss of an enzyme that is important for this process. This could be shown for the first time in vivo in a living host organism, thus representing a breakthrough in the research of this special group of bacterial pathogens.

Mycoplasmas are very simple bacteria. They have a minimalist genome and no protective cell wall. Nevertheless, they are common and successful pathogens that cause infections in the lungs, joints and udders of animals like cattle or sheep. The bacteria can also cause chronic illnesses in humans.


Mycoplasms escape immune answers of their host despite a very small "genetic arsenal".

Institute of Microbiology/Vetmeduni Vienna

Due to a lack of or insufficient vaccines, these bacteria present a health risk as well as a risk of economic loss for the meat and dairy industry.

One of the most important pathogenic mycoplasma species in sheep and goats, Mycoplasma agalactiae, has been the subject of research at the Institute of Microbiology, formerly the Institute of Bacteriology, Mycology and Hygiene, at Vetmeduni Vienna for many years. By specifically inactivating a certain area in the genome of this pathogen the researchers made an important step forward, especially due to the fact that mycoplasmas are generally difficult to manipulate genetically.

They were able to use these so-called knock-out mutants to explore for the first time those mechanisms used by the mycoplasmas to outsmart the immune defences during an infection in a natural host organism. The mycoplasmas were found to be such clever “genomic strategists” that they could even compensate for the artificial gene inactivation.

Surface variation as a strategy against immune response

“We have known for several years that some mycoplasma species possess gene families that produce highly variable proteins for the membrane surface. These proteins compensate for the lack of a cell wall, but they are recognized by the immune system as antigens, thus foreign proteins,” explains first author Rohini Chopra-Dewasthaly.

The genes are therefore subject to phase variation, which means that they can be spontaneously switched on and off at high frequency and be replaced by other variants. Through this surface variation the mycoplasmas are equipped with a sort of molecular stealth mechanism that can outsmart the immune system.

The researchers from Vetmeduni Vienna identified an important component of this mechanism, an enzyme called recombinase, and were able to deactivate it through genetic modification. “This stopped the phase variation so that the surface of the mycoplasmas could no longer change,” says senior author Renate Rosengarten. The laboratory-produced mycoplasmas, called phase-locked mutants, were tested for the first time in vivo, namely in sheep, the natural host. Surprisingly, the mycoplasmas proved to be real survivors once they were back in their natural environment.

Even an artificially inactivated molecular stealth mechanism cannot stop the mycoplasmas’ survival abilities

Although the phase-locked mutants should not have been able to escape the immune defences of the infected animals, there were hardly any differences seen compared to the course of the disease with unaltered mycoplasmas. Even without an active recombinase, the mycoplasma mutants demonstrably varied their surface proteins by using a previously unknown alternative mechanism, which could only be discovered and deciphered by the in vivo experiments.

“The research findings regarding the effective infection of a natural host confirm that the switching of its surface protein antigens is absolutely necessary for the survival of Mycoplasma agalactiae during an infection,” says Chopra-Dewasthaly. “That this was possible even without the important recombinase shows how cleverly mycoplasmas use their gene repertoire to resist the host’s immune defences. This allows them to be quite successful pathogens despite their very small genome.”

Rosengarten explains the difference between the laboratory and in vivo experiments by pointing to the different environmental conditions which the mycoplasmas are subjected to: “In the test tube, the mycoplasmas can propagate under ideal conditions and don’t have to expect an immune response. This means that there is no immediate need to respond to the inactivation of the phase variation.” In an infected host organism, on the other hand, the mycoplasmas as pathogens must become active immediately once they are recognized and attacked by the immune system if they want to survive. The fact that pathogenic mycoplasmas can indeed compensate for the confirmed and perfectly reproducible inactivation of the phase variation in their natural environment in a host organism and how this is done can only be detected and analysed in a living animal.
The work was supported by funds from the Austrian Science fund FWF.

Service:

“Vpma Phase Variation is Important for Survival and Persistence of Mycoplasma agalactiae in the Immunocompetent Host” by Rohini Chopra-Dewasthaly, Joachim Spergser, Martina Zimmerman, Christine Citti, Wolfgang Jechlinger and Renate Rosengarten was published in PLOS PATHOGENS.

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006656

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. The Vetmeduni Vienna plays in the global top league: in 2017, it occupies the excellent place 8 in the world-wide Shanghai University veterinary in the subject "Veterinary Science". http://www.vetmeduni.ac.at

Scientific contact:
Rohini Chopra-Dewasthaly
Institute of Microbiology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-2104
rohini.chopra-dewasthaly@vetmeduni.ac.at

Renate Rosengarten
Institute of Microbiology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-2100
M + 43 676 7082533
renate.rosengarten@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2017/...

Mag. Georg Mair | idw - Informationsdienst Wissenschaft

Further reports about: Veterinary agalactiae immune immune system mutants pathogens proteins

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>