Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the power plants of the cell get shaped

11.09.2015

HZI scientists develop model for dynamic mitochondrial networks

Mitochondria are the power plants of cells. They control the production of energy and initiate various central cellular processes. If they become non-functional, this can cause or favour a number of diseases. These diseases are mainly of a neurological or muscular type, but include ageing processes as well.


Cytoskeleton (grey lines) affects fusion of mitochondria. By this it shapes their network and simultaneously separates them into peripheral dispersed fraction (blue) and central condensed ones (red)

© HZI / Sukhorukov

Systems biologists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig used a new mathematical model to describe which mechanisms are involved in the formation and maintenance of the dynamic mitochondrial networks in cells. The scientists published their results in "Scientific Reports".

One special feature of mitochondria is their pronounced dynamic behaviour inside the cell. They form a network that changes on a time scale of minutes through fission and fusion with other mitochondria again. Their special structure has a significant influence on how effectively they can supply energy:

Fibrous network structures produce a large amount of energy, whereas smaller fragments are less effective. "These processes play a role in cell ageing as well. Over-stressed or damaged mitochondria get fragmented and are then subjected to disposal," says Valerii Sukhorukov, who is a scientist at the Systems Immunology department at the HZI and the principal author of the study.

But how does the dynamic balance between the small fragments and the effective fibres of mitochondria get established? This was the central question addressed by the researchers. "Mechanisms of this type cannot be studied by biochemical analyses alone. This requires model-based simulations on a computer that explain the dynamic changes in the cell very well," says Prof Michael Meyer-Hermann, who directs the Systems Immunology department.

For this purpose, the scientists developed an initial mathematical model that is based on the different lengths of the mitochondrial fragments in linear or branched arrangement. The central result of the study is that an exact description of the mitochondria in the cell becomes possible only if the random motions of mitochondria along the fibres of the cellular skeleton, called microtubules, are taken into account.

This resulted in a so-called graph model that is based on the density of the microtubules and their intersections within the cell. The model describes all forms of mitochondria that have been found in experiments thus far and it also yields explanations for events that were understood incompletely thus far.

Sukhorukov and his colleagues would like to use the new mathematical model in the future to analyse the quality control of the fragmented mitochondria and to understand how cells control or remedy damage to their mitochondria. "This is very important to understand how cells control their energy balance despite the accumulation of damage with advancing age. This would allow us to draw conclusions about certain genetics-related diseases such as Parkinson's and ageing processes in the immune system," says Sukhorukov.

Original publication:
Valerii M. Sukhorukov, Michael Meyer-Hermann. Structural Heterogeneity of the Mitochondria Induced by the Microtubule Cytoskeleton.Scientific Reports. 2015 Sep 11. 5:13924. DOI: 10.1038/srep13924

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/how_the_po... - This press release at helmholtz-hzi.de
http://dx.doi.org/10.1038/srep13924 - Link to the original publication

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>