Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the lung repairs its wounds

14.07.2015

Our lungs are permanently exposed to harmful environmental factors that can damage or even destroy their cells. In a specific regenerative process these injured cells must be replaced as soon as possible. In collaboration with colleagues from the Max Planck Institute (MPI) of Biochemistry, scientists at the Helmholtz Zentrum München have now, for the first time, gained detailed insights into the dynamic remodeling of the tissue during lung repair. The results have just been published in EMBO Molecular Systems Biology.

According to the World Health Organization (WHO), lung diseases are the third most common cause of death worldwide: toxic particles, infections, and chronic inflammatory responses pose a permanent threat to our lungs.


Source: Fotolia [M] Herbert Schiller

To date, the regenerative mechanisms leading to healing of lung injury remain incompletely understood. Since few to no causal therapies are in place for most lung diseases, it is important to understand how these healing processes, which involve initial inflammation, fibrosis, and then resolution thereof, occur in the lung.

Using novel mass spectrometry techniques, an interdisciplinary team of scientists led by Prof. Matthias Mann, Director at the MPI of Biochemistry, and Prof. Oliver Eickelberg, Chairman of the Comprehensive Pneumology Center (CPC) at the Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians-Universität, has now succeeded, for the first time, to quantify and profile dynamic changes in the composition of the lung tissue throughout the different phases of lung regeneration.

More than 8,000 proteins examined

When the pulmonary alveoli are damaged, various proteins are secreted into the extracellular space, where they form the so-called extracellular matrix (ECM). These proteins are crucial for tissue healing by instructing various processes, including the activation of specific stem cell populations, ensuring that lung tissue can be restored to its original condition.

Now, the scientists succeeded for the first time in identifying and quantifying the abundance and solubility of more than 8,000 proteins in the lung proteome throughout the multistage tissue repair processes. “The information we have gained about the dynamic changes in ECM composition and its interactions with various secreted growth factor proteins enables us to develop new hypotheses for the activation of stem cells in the lung,” explains Dr. Herbert Schiller, first author of the study.

The findings of the research team will provide an important basis for further translational research on the development of pulmonary fibrosis* and chronic lung diseases in general, the scientists say. “These novel mass spectrometry techniques enable us to analyze variations in the type and abundance of proteins in patients with lung fibrosis and healthy individuals and will therefore likely lead to new approaches for the treatment of chronic lung diseases in general and lung fibrosis in particular”, Eickelberg predicts.


Further information

Background:
* Pulmonary fibrosis is a chronic lung disease, characterized by pathological accumulation of ECM proteins, which results in hardening of the lung and thus difficulties to breathe. The development of fibrosis is believed to be a result of defective regeneration mechanisms.

Original publication:
Schiller, HB et al. (2015) Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair, Molecular Systems Biology, DOI: : 10.15252/msb.20156123

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The Comprehensive Pneumology Center (CPC) is a joint research project of the Helmholtz Zentrum München, the Ludwig-Maximilians-Universität Clinic Complex and the Asklepios Fachkliniken München-Gauting. The CPC's objective is to conduct research on chronic lung diseases in order to develop new diagnosis and therapy strategies. The CPC maintains a focus on experimental pneumology with the investigation of cellular, molecular and immunological mechanisms involved in lung diseases. The CPC is a site of the Deutsches Zentrum für Lungenforschung (DZL).

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49 89 3187 2238 - Fax: +49 89 3187 3324 – E-mail: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Prof. Dr. Oliver Eickelberg, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Lungenbiologie, Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49 89 3187 4666 - E-mail: oliver.eickelberg@helmholtz-muenchen.de

Weitere Informationen:

http://msb.embopress.org/cgi/doi/10.15252/msb.20156123 - Link to the publication
http://www.helmholtz-muenchen.de/en/news/press-releases/2015/index.html - Press Releases of the Helmholtz Zentrum München
http://www.helmholtz-muenchen.de/en/ilbd/index.html - Institut für Lungenbiologie/Comprehensive Pneumology Center

Helmholtz Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Helmholtz Pneumology diseases fibrosis healing lung lung diseases processes

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>