Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the Cell Keeps Misdelivered Proteins From Causing Damage in the Cell Nucleus

18.12.2014

Heidelberg researchers study process of marking and cellular waste disposal

In their research on protein quality control, Heidelberg scientists gained new insights into how the cell keeps proteins misdirected into the cell nucleus from causing damage. Their investigations focussed on a complex apparatus on the inner nuclear membrane that detects and marks the misdelivered proteins.

In an international cooperation with researchers from France, Sweden and Canada, the team under the direction of Prof. Dr. Michael Knop at the Center for Molecular Biology of Heidelberg University (ZMBH) demonstrated how the cellular “waste disposal service” is triggered in this process. The results of their research were published in “Nature”.

Cells are quite small, but nevertheless very precisely organised in terms of structure – everything has its place. To find their proper place, proteins bear a type of signal built into their structure. These signals function like addresses, and the intracellular “postal service” delivers them to the correct destination. One of these destinations is the cell nucleus. It contains genomic information – the cell DNA.

The DNA has to be read and decoded into new proteins in order for the cell to divide and respond to its environment. The nuclear proteins ensure this process runs correctly. But what happens when proteins accidently find their way into the cell nucleus even though they do not belong there? “This endangers the reading of the genomic information and under certain conditions threatens the existence of the entire cell,” explains Prof. Knop, who heads the yeast cell and systems biology research group at the ZMBH.

During the course of their investigations, Prof. Knop’s research group developed a new method of detecting the misguided proteins and studying how the cell handles them. In collaboration with two research labs, from Rennes and Stockholm, the Heidelberg team at the ZMBH found that the cell contains a complex apparatus on the inner nuclear membrane, a ubiquitin ligase that participates in protein quality control. The ligase can detect and mark the incorrect proteins. Based on this so-called polyubiquitination, the cell “knows” that this particular protein does not belong in the nucleus and activates cellular waste disposal. A proteasome almost literally swallows and “digests” the marked proteins.

“Until now we assumed that the ubiquitin ligase we studied was linked to a special signal transmission process involved in supplying the cell with amino acids,” says Prof. Knop. “We were all the more surprised when our research showed that they actually do not directly perform this function.” Instead, the ligase triggers the removal of a protein that would disrupt the amino acid supply should it arrive in the nucleus at the wrong time.

The Heidelberg scientist further explains that this “sophisticated control mechanism” also works with various other proteins. If they are not delivered correctly, the ubiquitin ligase sets off the process of removing the misdirected proteins from the cell nucleus and the nuclear membrane. Prof. Knop: “But this question still remains: How can this ubiquitin ligase tell whether the proteins have landed in the right or the wrong place?”

Michael Knop also heads the cell morphogenesis and signal transduction working group at the German Cancer Research Center (DKFZ). The researchers from Heidelberg University and the DKFZ collaborated in this study with scientists from the National Centre for Scientific Research in Rennes and the University of Rennes, the Stockholm University, the European Molecular Biology Laboratory (EMBL) in Heidelberg and the University of Toronto.

Original publication:
A. Khmelinskii, E. Blaszczak, M. Pantazopoulou, B. Fischer, D.J. Omnus, G. Le Dez, A. Brossard, A. Gunnarsson, J.D. Barry, M. Meurer, D. Kirrmaier, C. Boone, W. Huber, G. Rabut, P.O. Ljungdahl, M. Knop: Protein quality control at the inner nuclear membrane, Nature 516, 410-413 (18 December 2014), doi: 10.1038/nature14096

Contact:
Prof. Dr. Michael Knop
Center for Molecular Biology of Heidelberg University
Phone: +49 6221 54-4213
m.knop@zmbh.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.zmbh.uni-heidelberg.de/knop

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>