Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the Cell Keeps Misdelivered Proteins From Causing Damage in the Cell Nucleus

18.12.2014

Heidelberg researchers study process of marking and cellular waste disposal

In their research on protein quality control, Heidelberg scientists gained new insights into how the cell keeps proteins misdirected into the cell nucleus from causing damage. Their investigations focussed on a complex apparatus on the inner nuclear membrane that detects and marks the misdelivered proteins.

In an international cooperation with researchers from France, Sweden and Canada, the team under the direction of Prof. Dr. Michael Knop at the Center for Molecular Biology of Heidelberg University (ZMBH) demonstrated how the cellular “waste disposal service” is triggered in this process. The results of their research were published in “Nature”.

Cells are quite small, but nevertheless very precisely organised in terms of structure – everything has its place. To find their proper place, proteins bear a type of signal built into their structure. These signals function like addresses, and the intracellular “postal service” delivers them to the correct destination. One of these destinations is the cell nucleus. It contains genomic information – the cell DNA.

The DNA has to be read and decoded into new proteins in order for the cell to divide and respond to its environment. The nuclear proteins ensure this process runs correctly. But what happens when proteins accidently find their way into the cell nucleus even though they do not belong there? “This endangers the reading of the genomic information and under certain conditions threatens the existence of the entire cell,” explains Prof. Knop, who heads the yeast cell and systems biology research group at the ZMBH.

During the course of their investigations, Prof. Knop’s research group developed a new method of detecting the misguided proteins and studying how the cell handles them. In collaboration with two research labs, from Rennes and Stockholm, the Heidelberg team at the ZMBH found that the cell contains a complex apparatus on the inner nuclear membrane, a ubiquitin ligase that participates in protein quality control. The ligase can detect and mark the incorrect proteins. Based on this so-called polyubiquitination, the cell “knows” that this particular protein does not belong in the nucleus and activates cellular waste disposal. A proteasome almost literally swallows and “digests” the marked proteins.

“Until now we assumed that the ubiquitin ligase we studied was linked to a special signal transmission process involved in supplying the cell with amino acids,” says Prof. Knop. “We were all the more surprised when our research showed that they actually do not directly perform this function.” Instead, the ligase triggers the removal of a protein that would disrupt the amino acid supply should it arrive in the nucleus at the wrong time.

The Heidelberg scientist further explains that this “sophisticated control mechanism” also works with various other proteins. If they are not delivered correctly, the ubiquitin ligase sets off the process of removing the misdirected proteins from the cell nucleus and the nuclear membrane. Prof. Knop: “But this question still remains: How can this ubiquitin ligase tell whether the proteins have landed in the right or the wrong place?”

Michael Knop also heads the cell morphogenesis and signal transduction working group at the German Cancer Research Center (DKFZ). The researchers from Heidelberg University and the DKFZ collaborated in this study with scientists from the National Centre for Scientific Research in Rennes and the University of Rennes, the Stockholm University, the European Molecular Biology Laboratory (EMBL) in Heidelberg and the University of Toronto.

Original publication:
A. Khmelinskii, E. Blaszczak, M. Pantazopoulou, B. Fischer, D.J. Omnus, G. Le Dez, A. Brossard, A. Gunnarsson, J.D. Barry, M. Meurer, D. Kirrmaier, C. Boone, W. Huber, G. Rabut, P.O. Ljungdahl, M. Knop: Protein quality control at the inner nuclear membrane, Nature 516, 410-413 (18 December 2014), doi: 10.1038/nature14096

Contact:
Prof. Dr. Michael Knop
Center for Molecular Biology of Heidelberg University
Phone: +49 6221 54-4213
m.knop@zmbh.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.zmbh.uni-heidelberg.de/knop

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>