Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the brain wakes you up

22.12.2015

Scientists from Bern have discovered a mechanism which is responsible for the rapid arousal from sleep and anesthesia in the brain. The results of their study suggest new strategies for the medical treatment of sleep disorders and recovery of consciousness in vegetative states.

Chronic sleep perturbances affect 10-20% of the population of Switzerland and almost everyone experiences sleep problems at least once in a lifetime. Beside the quantity of sleep that is often affected in insomnia, clinical and experimental studies emphasize that the quality of sleep (e.g., depth of your sleep) is equally important for a good night’s sleep and a complete recovery of «body and mind» functions.


Arousal power of the discovered circuit: Illustration of an emergence from anesthesia shown on the EEG recordings from the mouse brain controlled with optogenetic.

Department of Clinical Research, University of Bern

«The consequences of sleep perturbations on life quality go far beyond daytime sleepiness and mood alteration. Cognitive impairment, hormonal imbalance and high susceptibility to cardiac or metabolic disorders are amongst some of the negative impacts frequently associated with subtle chronic sleep problems», says Prof. Antoine Adamantidis from the Department of Clinical Research of the University of Bern and Department of Neurology at the Bern University Hospital.

The quantity and the quality of sleep are now considered as an early marker of many neurological disorders including Alzheimer’s disease, Parkinson’s disease, and schizophrenia. Unfortunately, pharmaceutical strategies combined with improved life hygiene have limited effect. «Personalized medicine» strategies for the treatment of either insufficient sleep quality or quantity are missing.

Brain circuits for arousal and consciousness

Therefore, intensive experimental research is conducted to understand how brain circuits control sleep-wake cycle and consciousness – an enigma in modern Neurosciences and an exciting key mystery to resolve.

Together with fellow researcher Carolina Gutierrez Herrera and colleagues from Germany, Adamantidis made a dual discovery: his team identified a new circuit in the brain of mice whose activation causes rapid wakefulness while its inhibition deepens sleep.

The study was published in the scientific journal «Nature Neuroscience».

Mammalian sleep is classically divided in two phases, including non-rapid eye movement (NREM) sleep or «light» sleep, and REM (or paradoxical) sleep or «deep»/dreaming sleep. Key brain circuits for those two states have been identified.,However, the precise underlying mechanisms – such as the onset, maintenance and termination of sleep and dreaming – remain unknown.

Adamantidis and Gutierrez Herrera identified a new neural circuit between two brain regions called hypothalamus and thalamus, which have been associated with EEG (electroencephalogram) rhythms during sleep. The activation of this circuit signals the termination of light sleep: using a recent technology called optogenetics, the researchers made neurons from the hypothalamus controllable with millisecond-timescale light pulses and showed that their transient activation during light sleep induced rapid awakenings, while their chronic activation maintains prolonged wakefulness.

In contrast, optogenetic silencing of this circuit stabilizes light sleep and increases its intensity. In a translational analogy, hyperactivity of this circuit may cause insomnia, while its hypo-activity could be responsible for hypersomnia, making it a new therapeutical target for sleep disorders.

Causing emergence from anesthesia and unconsciousness

Interestingly, the arousal power of this circuit is so strong that its activation precipitates emergence from anesthesia and the recovery of consciousness. «This is exciting discovery since therapeutical approaches to recover from a vegetative or minimally conscious state are quite limited», says Adamantidis. Non-selective deep brain electrical stimulation has been used with some success, however the underlying brain mechanisms remain unclear. In this study, Adamantidis, Gutierrez Herrera and collaborators nailed down a selective brain circuit important for the recovery of consciousness.

The dual findings of the Bernese researchers shine light on the brain mechanism of arousal and opens new door for tailored medical treatment of sleep perturbances, and provide a roadmap for arousing patients from a vegetative or minimally conscious state. However, Adamantidis emphasizes that «even though we made an important step forward now, it will take some time before novel therapeutical strategies will be designed based on our results».

Publication details:
Carolina Gutierrez Herrera, Marta Carus Cadavieco, Sonia Jego, Alexey Ponomarenko, Tatiana Korotkova and Antoine Adamantidis. Hypothalamic feed-forward inhibition of thalamocortical network controls arousal and consciousness. Nature Neuroscience 2015 (In Press)

Weitere Informationen:

http://www.unibe.ch

Nathalie Matter | Universität Bern

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>