Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the Brain Learns to Distinguish Between What Is Important and What Is not

17.06.2015

Traffic lights, neon-lit advertisements, a jungle of road signs. When learning to drive, it is often very difficult to distinguish between important and irrelevant information. How the brain learns the importance of certain images over others is being investigated by Prof. Sonja Hofer at the Biozentrum of the University of Basel.

In a recently published study in “Neuron”, the neuroscientist and her team show that learning the relevance of images considerably modifies neuronal networks in the brain. These changes might help our brain to process and classify the overload of stimuli in our environment more effectively.


Overwhelmed in the traffic: filtering visual information in the brain.

(Image: University of Basel, Biozentrum)

How we perceive our environment greatly depends on what we have previously seen and learnt. For example, expert drivers do not need to think twice about the meaning of different road signs and are experienced in assessing traffic situations.

They can filter out relevant information from a flood of other irrelevant stimuli and thus react quickly. In contrast, beginners need much longer to process the new information. Prof. Sonja Hofer’s team at the Biozentrum of the University of Basel and University College London addressed the question of how processing of sensory stimuli is optimized in the brain through learning.

The brain learns to discriminate between images

To do this, Prof. Hofer’s team investigated the visual cortex of mice. This part of the brain is responsible for the processing and perception of visual stimuli. Mice ran through a virtual-reality environment where they encountered various images, one of which was paired with a reward. Within one week, the animals had learnt to discriminate between the images and to respond accordingly.

This learning was reflected in the activity of nerve cells in the visual cortex whose responses were recorded and tracked over the course of learning. While the responses in the brain to the relevant visual stimuli were quite unspecific in beginner mice, many more neurons reacted specifically to the shown images after one week of training.

Learning optimizes stimulus processing

“From day to day, the response of the neurons to the images became increasingly distinguishable and reliable”, says Adil Khan, one of the two first authors. He speculates that such changes in the brain might also allow us to process important information from our environment more efficiently, and perhaps underlies our ability to react promptly to important visual stimuli.

The scientists also demonstrated that diverse internal and external signals affect the processing of the visual stimuli. “We observed that the response of the nerve cells to the same visual stimuli became less accurate when the mice where engaged in another task, such as having to discriminate between different smells. The visual stimuli then lose their relevance and are no longer so effectively analyzed by the brain”, says Khan.

“Remarkably, the expectation of a stimulus even before it appears, and the anticipation of a reward also altered the activity of specific brain cells. This means that from one moment to the next our brain might process the same stimulus quite differently depending on its importance and relevance.”

Internal signals influence visual perception

Traditionally it was thought that the visual cortex exclusively processes visual information. This study, however, corroborates that during learning also many other signals from various brain regions influence activity in this brain area. “This means that our previously learnt knowledge, our expectations and the context we are in can have a great impact on our visual perception of the environment”, explains Hofer.

Original source
Jasper Poort, Adil G. Khan, Marius Pachitariu, Abdellatif Nemri, Ivana Orsolic, Julija Krupic, Marius Bauza, Maneesh Sahani, Georg B. Keller, Thomas D. Mrsic-Flogel, and Sonja B. Hofer
Learning Enhances Sensory and Multiple Nonsensory Representations in Primary Visual Cortex
Neuron; published online 5 June 2015, doi: 10.1016/j.neuron.2015.05.037

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/How-the-brain-learns-to-d...

Katrin Bühler | Universität Basel

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>