Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How receptors for medicines work inside cells

05.09.2017

G protein-coupled receptors are the key target of a large number of drugs. Würzburg scientists have now been able to show more precisely how these receptors act in the cell interior.

The human genome encodes hundreds of G protein-coupled receptors (GPCRs). These form the largest group of receptors through which hormones and neurotransmitters exert their functions on our cells. Therefore, they are of highest importance as drug targets: around half of all prescribed drugs act on these receptors - and thus GPCRs help in the treatment of widespread diseases such as hypertension, asthma or Parkinson.


Upon binding of a hormone (TSH), the receptor is taken up by the cell (internalization) and transported to the TGN, where it induces local cAMP production and PKA activation.

Graphic: Team Calebiro

Publication in Nature Communications

For a long time, scientists were convinced that GPCRs sit at the cell surface and only from there influence the activity of the cell via activation of various intracellular signalling cascades. This belief has been shaken by a series of recent studies. These studies suggest that GPCRs are also active in the cell interior.

Researchers led by Professor Davide Calebiro of the Institute of Pharmacology and Toxicology and the Bio-Imaging Center of the University of Würzburg have now provided important support to this theory. The results of their work are presented in the current issue of the journal Nature Communications.

In simplified terms, G-protein-coupled receptors sit at the cell membrane waiting for a hormone or neurotransmitter to bind and thereby activate them. The signal is then transmitted inside the cell, mainly through the production of an intracellular second messenger such as cyclic adenosine monophosphate (short cAMP). This second messenger, in turn, is involved in the regulation of a large number of cell functions, such as gene transcription and cell division.

Receptors are also active in the cell interior

"The first indication that GPCRs also initiate the production of cAMP in the cell interior came from two studies of typical protein hormone receptors," says Davide Calebiro. He and his team were responsible for one of these studies; they had investigated a receptor important for the production of thyroid hormones  the so-called thyroid-stimulating hormone (TSH) receptor. "Those studies independently showed that GPCRs are able to induce a second, persistent phase of cAMP production in the cell interior," said Davide Calebiro. In fact, this phenomenon was shown to be "biologically relevant". However, the exact mechanism was largely unknown.

With their latest study, the researchers of the University of Würzburg, together with colleagues from the University of Birmingham, have succeeded in deciphering what is happening in the cell interior. As major player, they identified the trans-Golgi network (TGN), a network of tubules and vesicles associated with the Golgi complex. This is the cell compartment where newly synthesized proteins are sorted into different transport vesicles that carry them to their final subcellular locations. "Our new data show that the TGN is an important intracellular platform for the activity of G protein-coupled receptors," says Davide Calebiro. According to the scientists, their study reveals a new mechanism that explains the effects of GPCR signalling in the cell interior.

The mechanism of GPCR signalling in the cell interior

The newly described mechanism of GPCR signalling inside thyroid cells can be recapitulated as follows: upon TSH binding, TSH receptors are taken up by the cells (internalized) and transported to the trans-Golgi network. There, the receptors induce the production of cAMP and activate another enzyme - protein kinase A. Since these events happen in close proximity to the nucleus, where the genetic information of the cell is stored, they modify gene transcription.

"This study represents a significant step forward", affirms Davide Calebiro with confidence, as it presents a new model capable of explaining how GPCRs function inside our cells. These new results could "lead to the development of innovative drugs for a variety of human diseases that specifically target the uptake of receptors or their function in the TGN".

This study has been funded by the Deutsche Forschungsgemeinschaft DFG (Grant CA 1014/1-1 and SFB/Transregio 166–Project C1, Davide Calebiro).

Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Amod Godbole, Sandra Lyga, Martin J. Lohse & Davide Calebiro. Nature Communications, DOI: 10.1038/s41467-017-00357-2

Contact

Prof. Davide Calebiro, MD PhD DSc, phone: +49 931 31-80067, davide.calebiro@toxi.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>