Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How Rabies "Hijacks" Neurons to Attack the Brain


Groundbreaking TAU study tracks precise path of deadly virus to the central nervous system

Rabies causes acute inflammation of the brain, producing psychosis and violent aggression. The virus, which paralyzes the body's internal organs, is always deadly for those unable to obtain vaccines in time. Some 55,000 people die from rabies every year.

For the first time, Tel Aviv University scientists have discovered the exact mechanism this killer virus uses to efficiently enter the central nervous system, where it erupts in a toxic explosion of symptoms. The study, published in PLOS Pathogens, was conducted by Dr. Eran Perlson and Shani Gluska of TAU's Sackler Faculty of Medicine and Sagol School of Neuroscience, in collaboration with the Friedrich Loeffler Institute in Germany.

"Rabies not only hijacks the nervous system’s machinery, it also manipulates that machinery to move faster," said Dr. Perlson. "We have shown that rabies enters a neuron in the peripheral nervous system by binding to a nerve growth factor receptor, responsible for the health of neurons, called p75. The difference is that its transport is very fast, even faster than that of its endogenous ligand, the small molecules that travel regularly along the neuron and keep the neuron healthy."

Faster than a speeding train

To track the rabies virus in the nervous system, the researchers grew mouse sensory neurons in an observation chamber and used live cell imaging to track the path taken by the virus particles. The researchers "saw" the virus hijack the "train" transporting cell components along a neuron and drove it straight into the spinal cord. Once in the spinal cord, the virus caught the first available train to the brain, where it wrought havoc before speeding through the rest of the body, shutting it down organ by organ.

Nerve cells, or neurons, outside the central nervous system are highly asymmetric. A long protrusion called an axon extends from the cell body to another nerve cell or organ along a specific transmission route. In addition to rapid transmission of electric impulses, axons also transport molecular materials over these distances.

"Axonal transport is a delicate and crucial process for neuronal survival, and when disrupted it can lead to neurodegenerative diseases," said Dr. Perlson. "Understanding how an organism such as rabies manipulates this machinery may help us in the future to either restore the process or even to manipulate it to our own therapeutic needs."

Hijacking the hijacker

"A tempting premise is to use this same machinery to introduce drugs or genes into the nervous system," Dr. Perlson added. By shedding light on how the virus hijacks the transport system in nerve cells to reach its target organ with maximal speed and efficiency, the researchers hope their findings will allow scientists to control the neuronal transport machinery to treat rabies and other neurodegenerative diseases.

Disruptions of the neuron train system also contribute to neurodegenerative diseases, like Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS). According to Dr. Perlson, "An improved understanding of how the neuron train works could lead to new treatments for these disorders as well."

George Hunka | Eurek Alert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>