Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How protein islands form

15.08.2017

Researchers at the University of Freiburg identify protein that inhibits the development of autoimmune diseases

The immune system protects humans from threats such as, for example, disease-causing bacteria, and cancer as well. Yet if the system malfunctions, it can attack the body it is supposed to defend and cause autoimmune diseases such as type one diabetes mellitus or multiple sclerosis.


The researchers are using the "Proximity Ligation Assay" method to measure the distances between B cell receptors on the surface of the cell. If it is less than 20 nanometers, it appears in fluorescent red. Photo: Kathrin Kläsener

The working group of Dr. Susana Minguet, a biochemist – working in cooperation with Prof. Dr. Michael Reth, the chairman of the Department of Molecular Immunology at the University of Freiburg, and Prof. Dr. Miguel Ángel del Pozo of the National Center for Cardiovascular Research Carlos III ("Centro Nacional de Investigationes Cardiovasculares Carlos III" (CNIC)) in Madrid, has demonstrated that the membrane protein Caveolin-1 plays a key role in immune responses that trigger this type of disease. The team has presented its findings in the specialist journal "Nature Immunology."

Up to now research has often viewed autoimmune disease as the result of immune system hyperactivity, yet recently it has become increasingly clear that such ailments may also result from an immune system those responses are too weak.

This finding, which is supported by the researchers' study, could result in new approaches to treating these diseases. Therapies have until recently been aimed at suppressing patients' immune responses. Now, autoimmune diseases could be treated using alternative strategies, such as gene therapy, for example.

The group has identified the elementary function of Caveolin-1 in the plasma membrane of B-cells, the immune system cells that produce antibodies. B cells recognize substances via B cell antigen receptors (BCR). These protrude from the surface of the cell and, like a type of antenna, ensure that the B cells recognize all sorts of intruders – such as bacteria or viruses.

Once the intruder has been bound by the BCR, the B cell is activated and, together with other immune cells, can fight off a range of different types of pathogens.

Current studies, such as those of Michael Reth, for example, indicate that these antennas are not randomly distributed over the surface of the cell. Instead, they are bundled together in organized protein islands that coalesce as soon as a foreign substance is bound to a B cell receptor.

Minguet and her team have discovered that the protein Caveolin-1 regulates this organization, making it the key to activation of the B cells and the triggering of an immune response. Without Caveolin-1, the binding of viruses or bacteria to the B cell results in a reduced activation signal, which leads to a weakened immune response.

In the body, developing B cells are educated to distinguish the body's own substances from foreign ones. This process is based on the efficient signal transfer of the B cell receptors.

B cells that do not produce Caveolin-1 cannot properly organize the receptor on the cell membrane and as a result, efficient signal transfer fails. It is then that B cells emerge that recognize the body's own tissues. Yet they classify them as foreign, which leads to activation of the B cell and an undesirable immune response which can result in triggering autoimmune disease. The researchers demonstrated this by conducting experiments on mice.

The team's results have the potential to improve the current understanding of autoimmune disease and its treatment – also because up to now, science has lacked suitable animal models that present the same immune deficiencies that are observed in humans.

Susana Minguet began the research project in 2008 at the CNIC in Madrid, Spain. Since 2011, she has been a junior group leader at the Institute of Biology III at the University of Freiburg, where with the support of the Collaborative Research Center 1160 "Immune-mediated pathology as consequence of impaired immune reactions – IMPATH," she has been continuing her project at the BIOSS Centre for Biological Signalling Studies and the Center for Chronic Immunodeficiency – the CCI.

Original publication:
Caveolin-1-dependent nanoscale organization of the BCR regulates B cell tolerance. Susana Minguet, Kathrin Kläsener, Anna-Maria Schaffer, Gina J Fiala, Teresa Osteso-Ibánez, Katrin Raute, Inmaculada Navarro-Lérida, Frederike A Hartl, Maximilian Seidl, Michael Reth & Miguel A Del Pozo. Nature Immunology, http://dx.doi.org/10.1038/ni.3813.


Contact:
Dr. Gina Fiala
BIOSS Centre for Biological Signalling Studies
University of Freiburg
Phone: +49 (0)761 / 203 - 67512
E-Mail: gina.fiala@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/2017/how-protein-islands-form?set_language=...

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>