Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Plants isolate themselves against Bacteria

29.05.2015

When plants notice harmful bacteria, they respond very quickly: They close the pores on their leaves which serve as loophole for the pathogens. A Würzburg research team has analysed this process.

Plants are continuously besieged by viruses, fungi and bacteria. This is the reason why immune responses have developed in the course of evolution with which they defend themselves against many pathogenic microorganisms. An international research team has now analysed an immune response which complicates the penetration of bacteria into the leaves.


Bacteria use open pores in order to get into the inside of the leave (A). If the plant notices the bacterial flagellin, the OST1 enzyme activates the ion channels SLAC1 and SLAH3, and the pores close

(Graphics: Rob Roelfsema)

There are many very small pores in the leaves that can open wide or close completely. Through these holes in their skin, plants regulate the vital exchange of air and water with the environment. However, the pores also harbour a risk: They are welcome loopholes for pathogenic bacteria through which they can enter into the plant.

What happens in the event of a bacterial infection on the leave pores, the stomata, has so far been virtually unknown. An international research team has just published new findings about this issue in the “New Phytologist” journal. The plant scientists Rainer Hedrich and Rob Roelfsema from the University of Würzburg form the core of the team. The molecular mechanisms for controlling the stomata have been their focus for many years in their study groups.

Injecting the bacterial protein flagellin into leaves

How do stomata respond to an infestation of bacteria? This is what Aysin Guzel Deger, currently a guest PhD student at the University of Würzburg, from the University of Mersin (Turkey), wanted to find out.

For this, she injected the bacterial protein flagellin into the leaves of the model plant Arabidopsis (Arabidopsis thaliana). This protein occurs in many bacteria. The plants obviously consider it dangerous and as a result respond very quickly: About 15 minutes after the injection they start to close their stomata. This is how they block the entry path of the bacteria.

The flagellin develops its effect on the guard cells which limit the stomata of the plant: Each leaf pore is lined by two cells and they ensure that the pore size can be changed. In cooperation with a team from Estonia, the Würzburg team found out exactly where the flagellin has an effect on the guard cells: “Through the OST1 enzyme it activates the ion channels SLAC1 and SLAH3. As a result the guard cells go limp and the pores close”, explains Roelfsema.

Flagellin activates the dry stress signal path

Interestingly, the enzyme and the two ion channels are also contributors when plants close their pores in the event of dryness. This way they reduce the loss of water to the environment, as Hedrich’s team already found out quite a while ago.

Dryness and bacterial pathogens therefore activate the same signal path in plants: In plant cultivation, this new finding could be used to catch two birds with one stone: “Cultivated plants with improved OST1 enzymes may at the same time be more resistant against dryness and against bacteria, says professor Hedrich. For farming, this is an exciting perspective, because dryness and pests are among the main factors that contribute to worldwide crop losses.

“Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure”, Aysin Guzel Deger, Sönke Scherzer, Maris Nuhkat, Justyna Kedzierska, Hannes Kollist, Mikael Brosché, Serpil Unyayar, Marie Boudsocq, Rainer Hedrich, and M. Rob G. Roelfsema. New Phytologist, published online on 30 April 2015, DOI: 10.1111/nph.13435

Contact

Prof. Dr. Rainer Hedrich, Department of Botany I (Molecular Plant Physiology and Biophysics) of the University of Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

PD Dr. Rob Roelfsema, Department of Botany I (Molecular Plant Physiology and Biophysics) of the University of Würzburg, T (0931) 31-86121, roelfsema@botanik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>