Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Plants isolate themselves against Bacteria

29.05.2015

When plants notice harmful bacteria, they respond very quickly: They close the pores on their leaves which serve as loophole for the pathogens. A Würzburg research team has analysed this process.

Plants are continuously besieged by viruses, fungi and bacteria. This is the reason why immune responses have developed in the course of evolution with which they defend themselves against many pathogenic microorganisms. An international research team has now analysed an immune response which complicates the penetration of bacteria into the leaves.


Bacteria use open pores in order to get into the inside of the leave (A). If the plant notices the bacterial flagellin, the OST1 enzyme activates the ion channels SLAC1 and SLAH3, and the pores close

(Graphics: Rob Roelfsema)

There are many very small pores in the leaves that can open wide or close completely. Through these holes in their skin, plants regulate the vital exchange of air and water with the environment. However, the pores also harbour a risk: They are welcome loopholes for pathogenic bacteria through which they can enter into the plant.

What happens in the event of a bacterial infection on the leave pores, the stomata, has so far been virtually unknown. An international research team has just published new findings about this issue in the “New Phytologist” journal. The plant scientists Rainer Hedrich and Rob Roelfsema from the University of Würzburg form the core of the team. The molecular mechanisms for controlling the stomata have been their focus for many years in their study groups.

Injecting the bacterial protein flagellin into leaves

How do stomata respond to an infestation of bacteria? This is what Aysin Guzel Deger, currently a guest PhD student at the University of Würzburg, from the University of Mersin (Turkey), wanted to find out.

For this, she injected the bacterial protein flagellin into the leaves of the model plant Arabidopsis (Arabidopsis thaliana). This protein occurs in many bacteria. The plants obviously consider it dangerous and as a result respond very quickly: About 15 minutes after the injection they start to close their stomata. This is how they block the entry path of the bacteria.

The flagellin develops its effect on the guard cells which limit the stomata of the plant: Each leaf pore is lined by two cells and they ensure that the pore size can be changed. In cooperation with a team from Estonia, the Würzburg team found out exactly where the flagellin has an effect on the guard cells: “Through the OST1 enzyme it activates the ion channels SLAC1 and SLAH3. As a result the guard cells go limp and the pores close”, explains Roelfsema.

Flagellin activates the dry stress signal path

Interestingly, the enzyme and the two ion channels are also contributors when plants close their pores in the event of dryness. This way they reduce the loss of water to the environment, as Hedrich’s team already found out quite a while ago.

Dryness and bacterial pathogens therefore activate the same signal path in plants: In plant cultivation, this new finding could be used to catch two birds with one stone: “Cultivated plants with improved OST1 enzymes may at the same time be more resistant against dryness and against bacteria, says professor Hedrich. For farming, this is an exciting perspective, because dryness and pests are among the main factors that contribute to worldwide crop losses.

“Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure”, Aysin Guzel Deger, Sönke Scherzer, Maris Nuhkat, Justyna Kedzierska, Hannes Kollist, Mikael Brosché, Serpil Unyayar, Marie Boudsocq, Rainer Hedrich, and M. Rob G. Roelfsema. New Phytologist, published online on 30 April 2015, DOI: 10.1111/nph.13435

Contact

Prof. Dr. Rainer Hedrich, Department of Botany I (Molecular Plant Physiology and Biophysics) of the University of Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

PD Dr. Rob Roelfsema, Department of Botany I (Molecular Plant Physiology and Biophysics) of the University of Würzburg, T (0931) 31-86121, roelfsema@botanik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>