Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plant cell compartments "chat" with each other

04.11.2015

A team of researchers led by scientists from the University of Bonn has discovered a basis of communication in plant cells: The "MICU" protein controls the calcium ion concentration in the cellular power stations. Using these chemical signatures, the plants regulate, for instance, the formation of organs and react to water stress. The results may be used in the future to optimize agricultural crops. The reputable journal "The Plant Cell" reports on the results in its current issue.

Plants react to stimuli from their environment by specific responses: If available water becomes limiting, they curb evaporation from their leaves. If a pathogen attacks, they arm themselves with chemical weapons. If a soil fungus wishes to collaborate with a plant root for mutual benefit, both partners discuss their duties.


The fluorescent sensor protein provides information on the calcium ion concentration in mitochondria in real time. Blue indicates low, green, medium and red, high concentrations.

© Photo: Dr. Stephan Wagner

"All of these fine adjustments require a great deal of communication between the individual compartments of the plant cell," says Dr. Markus Schwarzlaender, principle investigator of an Emmy Noether group at the Institute of Crop Science and Resource Conservation at the University of Bonn.

When the various components of plant cells communicate with another, they do not use words but calcium ions, i.e. positively charged calcium atoms, instead.

"The information is encoded in the fluctuations of the calcium concentration of the various cell compartments," explains Dr. Schwarzlaender. How can a single ion contain and transduce so much information? This is the question scientists have been asking themselves since it became known how various cell compartments "chat" with each other.

The "MICU" protein is a central relay station

The team of Dr. Schwarzlaender, together with scientists from Italy, France, England, Australia and the Max Planck Institute for Plant Breeding Research in Cologne and the University of Muenster, have now shed light on this question.

Investigating the cellular power stations (mitochondria) of thale cress (Arabidopsis thaliana), the scientists discovered that the "MICU" protein fulfills a central role in the control of the calcium ion concentration in the mitochondria.

"In mammals, there is a very similar protein which also regulates the concentration of calcium ions," says Dr. Stephan Wagner from the team working with Dr. Schwarzlaender. Like a turbocharger, it prompts the mitochondria of mammals to provide more energy.

The scientists speculated that this could be an interesting candidate, but they were taken by surprise when they found the closely related plant-based "MICU" to be a central relay station in the communication system of Arabidopsis. "The two, similar proteins in animals and plants have evidently arisen from a common ancestor but over the course of millennia, they have developed distinct characteristics," says Dr. Schwarzlaender.

Fluorescing cellular power stations provide information

By destroying the gene with the MICU blueprint in the Arabidopsis genome, the researchers were able to experimentally explore what influence the protein has on the calcium communication of the plant cells. They equipped the mitochondria with a fluorescing sensor protein.

Using the variable fluorescence intensities of the sensor, it was possible to visualize changes in the calcium concentrations of the cellular power stations in the living plants. "We were able to identify a clear influence on the communication of the mitochondria," reports Dr. Wagner. Knockout of the MICU gene resulted, among other consequences, in modified properties of cell respiration.

"With our findings, we have established a basis for influencing the calcium signals in specific parts of the plant cell," Dr. Schwarzlaender summarizes. Since Arabidopsis is considered to be an experimental model for plants in general, the findings may be usable in the future for optimizing crops.

Looking ahead the researchers note that if, for example, specific plants could be taught to ally themselves with nitrogen-fixing soil bacteria via modified calcium signals, a large amount of fertilizer used in agriculture may be saved.

Publication: The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis, journal “The Plant Cell“, DOI: 10.1105/tpc.15.00509

Contact information:

Dr. Markus Schwarzlaender
Plant Energy Biology Lab
Institute of Crop Science and Resource Conservation
University of Bonn
Tel. ++49-228-7354266
E-Mail: markus.schwarzlander@uni-bonn.de

Weitere Informationen:

http://www.plantcell.org/content/early/2015/11/03/tpc.15.00509.abstract Publication

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

Further reports about: Arabidopsis Ca2+ calcium ions conservation mitochondria plant cell plant cells

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>