Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How knots can swap positions on a DNA strand


Computer simulations show how two knots on a DNA strand can interchange their positions

Physicists of Johannes Gutenberg University Mainz (JGU) and the Graduate School of Excellence “Materials Science in Mainz” (MAINZ) have been able with the aid of computer simulations to confirm and explain a mechanism by which two knots on a DNA strand can interchange their positions.

Schematic representation of the swapping event: one of the knots grows in size, while the other diffuses along the contour of the former.

ill./©: Peter Virnau, JGU

For this, one of the knots grows in size while the other diffuses along the contour of the former. Since there is only a small free energy barrier to swap, a significant number of crossing events have been observed in molecular dynamics simulations, i.e., there is a high probability of such interchange of positions.

“We assume that this swapping of positions on a DNA strand may also happen in living organisms,” explained Dr. Peter Virnau of the JGU Institute of Physics, who performed the computer simulation together with his colleagues Benjamin Trefz and Jonathan Siebert.

... more about:
»Academy »DNA »JGU »knots »mechanism »strands

The scientists expect that the mechanism may play an important role in future technologies such as nanopore sequencing, where long DNA strands are sequenced by being pulled though pores. Long DNA strands of more than 100,000 base pairs have an increasing chance of knots, which is relevant for sequencing.
Benjamin Trefz, Jonathan Siebert, Peter Virnau
How molecular knots can pass through each other
Proceedings of the National Academy of Sciences, 19 May 2014

Further information:
Dr. Peter Virnau
Condensed Matter Theory Group (KOMET)
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-20493
fax +49 6131 39-20496

Weitere Informationen: - press release

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Academy DNA JGU knots mechanism strands

More articles from Life Sciences:

nachricht New study reveals what's behind a tarantula's blue hue
01.12.2015 | University of California - San Diego

nachricht Tracing a path toward neuronal cell death
01.12.2015 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>