Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Fish Can Regenerate Eye Injuries at the Cellular Level

09.05.2016

Heidelberg scientists examine key function in the process of regeneration

Unlike what is possible with the human eye, fish are able to regenerate injuries to the retina at the cellular level. Scientists at Heidelberg University's Centre for Organismal Studies (COS) have now decoded how this regeneration starts, using studies of the model organism of the Medaka fish.


Confocal microscopy image of a section through the medaka fish retina. Single Müller glia and photoreceptor cells are labelled in different colours by a genetic system (red, green, yellow). Atoh7 expression in Müller glia cells leads a regeneration response in the absence of injury, including expansion of the cell soma and neurogenic cluster formation.

Image credit: Katharina Lust und Joachim Wittbrodt

Surprisingly, a single genetic factor triggers two central steps in the process of regeneration – cell division and the differentiation of progenitors into the different retinal cell types. These research results are of great biomedical relevance, according to Prof. Dr Joachim Wittbrodt. They were published in the journal “Development”.

Stem cells in the body can be stimulated in such a way that they start to correct faults autonomously – so far this has merely been science fiction. And yet scientists hope that it will one day be possible to target and replace lost cells in the body.

They focus on the retina of fish, since – unlike humans – fish are able to completely regenerate all retinal nerve cells upon injury. Special glia cells take on the function of stem cells. Why do fish have this ability but not humans, although the human eye also contains these retinal glia cells, also known as Müller cells?

Can the potential of these cells be activated and what factors ultimately stimulate this regenerative reaction? These questions are explored by Prof. Wittbrodt and his team at COS. The Heidelberg scientists have come up with a surprising reply.

Apparently the short pulse of a single genetic factor suffices to stimulate regeneration. The significant factor for cell differentiation is the Atoh7 gene. “We did not think that this key function could be triggered by a single factor,” says Lázaro Centanin, who carried out the study with Prof. Wittbrodt.

Lázaro Centanin explains that the complete regeneration response in the fish eye comprises several steps. First the Müller cells near the injury start to proliferate. The resultant neuronal clusters contain the progenitor cells for the cell types of the retina. In the last step, these progenitors differentiate and turn into the neuronal retinal cells to be restored.

Prof. Wittbrodt adds: “We used the potential of the Müller cells in the Medaka fish in order to test for factors that can evoke exactly this regenerative reaction without any kind of injury.” The different genetic factors employed are relevant either for the increase and growth of cells or play a part in cell differentiation. Joachim Wittbrodt’s research group has established a biological test system enabling the testing of the activity of arbitrary genes specifically in the Müller cells with respect to their regenerative potential.

“We were completely surprised that, with the Atoh7 gene, a single cell differentiation factor fulfils two functions and triggers not only proliferation but also differentiation into different retinal cell types,” says Katharina Lust, the first author of the study that has just been published. To underline the biomedical significance of these research findings, Prof. Wittbrodt points to degenerative retinal diseases that accompany the loss of neuronal cells and lead to blindness in humans.

The factor Atoh7 could either be used to generate retinal progenitor cells for transplantation to the degenerating eye, or also to stimulate the Müller cells directly endogenously. “We still have a long way to go before we can regenerate the human retina by endogenous stimulation of Müller cells. But it is a goal to work towards – and is not mere science fiction,” says the Heidelberg scientist.

Contact:
Prof. Dr. Joachim Wittbrodt

Centre for Organismal Studies

Phone +49 6221 54-6499

jochen.wittbrodt@cos.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: Eye Injuries cell types glia cells progenitor cells retinal

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>