Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Fish Can Regenerate Eye Injuries at the Cellular Level

09.05.2016

Heidelberg scientists examine key function in the process of regeneration

Unlike what is possible with the human eye, fish are able to regenerate injuries to the retina at the cellular level. Scientists at Heidelberg University's Centre for Organismal Studies (COS) have now decoded how this regeneration starts, using studies of the model organism of the Medaka fish.


Confocal microscopy image of a section through the medaka fish retina. Single Müller glia and photoreceptor cells are labelled in different colours by a genetic system (red, green, yellow). Atoh7 expression in Müller glia cells leads a regeneration response in the absence of injury, including expansion of the cell soma and neurogenic cluster formation.

Image credit: Katharina Lust und Joachim Wittbrodt

Surprisingly, a single genetic factor triggers two central steps in the process of regeneration – cell division and the differentiation of progenitors into the different retinal cell types. These research results are of great biomedical relevance, according to Prof. Dr Joachim Wittbrodt. They were published in the journal “Development”.

Stem cells in the body can be stimulated in such a way that they start to correct faults autonomously – so far this has merely been science fiction. And yet scientists hope that it will one day be possible to target and replace lost cells in the body.

They focus on the retina of fish, since – unlike humans – fish are able to completely regenerate all retinal nerve cells upon injury. Special glia cells take on the function of stem cells. Why do fish have this ability but not humans, although the human eye also contains these retinal glia cells, also known as Müller cells?

Can the potential of these cells be activated and what factors ultimately stimulate this regenerative reaction? These questions are explored by Prof. Wittbrodt and his team at COS. The Heidelberg scientists have come up with a surprising reply.

Apparently the short pulse of a single genetic factor suffices to stimulate regeneration. The significant factor for cell differentiation is the Atoh7 gene. “We did not think that this key function could be triggered by a single factor,” says Lázaro Centanin, who carried out the study with Prof. Wittbrodt.

Lázaro Centanin explains that the complete regeneration response in the fish eye comprises several steps. First the Müller cells near the injury start to proliferate. The resultant neuronal clusters contain the progenitor cells for the cell types of the retina. In the last step, these progenitors differentiate and turn into the neuronal retinal cells to be restored.

Prof. Wittbrodt adds: “We used the potential of the Müller cells in the Medaka fish in order to test for factors that can evoke exactly this regenerative reaction without any kind of injury.” The different genetic factors employed are relevant either for the increase and growth of cells or play a part in cell differentiation. Joachim Wittbrodt’s research group has established a biological test system enabling the testing of the activity of arbitrary genes specifically in the Müller cells with respect to their regenerative potential.

“We were completely surprised that, with the Atoh7 gene, a single cell differentiation factor fulfils two functions and triggers not only proliferation but also differentiation into different retinal cell types,” says Katharina Lust, the first author of the study that has just been published. To underline the biomedical significance of these research findings, Prof. Wittbrodt points to degenerative retinal diseases that accompany the loss of neuronal cells and lead to blindness in humans.

The factor Atoh7 could either be used to generate retinal progenitor cells for transplantation to the degenerating eye, or also to stimulate the Müller cells directly endogenously. “We still have a long way to go before we can regenerate the human retina by endogenous stimulation of Müller cells. But it is a goal to work towards – and is not mere science fiction,” says the Heidelberg scientist.

Contact:
Prof. Dr. Joachim Wittbrodt

Centre for Organismal Studies

Phone +49 6221 54-6499

jochen.wittbrodt@cos.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: Eye Injuries cell types glia cells progenitor cells retinal

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>