Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does water melt? Layer by layer!

13.12.2016

Scientists at the Max Planck Institute for polymer research have solved a controversial question concerning the melting of ice: it melts in a layer-by-layer fashion.

We all know that water melts at 0°C. However, already 150 years ago the famous physicist Michael Faraday discovered that at the surface of frozen ice, well below 0°C, a thin film of liquid-like water is present. This thin film makes ice slippery and is crucial for the motion of glaciers.


Ice melts layer by layer.

© MPIP

Since Faraday’s discovery, the properties of this water-like layer have been the research topic of scientists all over the world, which has entailed considerable controversy: at what temperature does the surface become liquid-like? How does the thickness of the layer dependent on temperature? How does the thickness of the layer increases with temperature? Continuously? Stepwise?

Experiments to date have generally shown a very thin layer, which continuously grows in thickness up to 45 nm right below the bulk melting point at 0°C. This also illustrates why it has been so challenging to study this layer of liquid-like water on ice: 45 nm is about 1/1000th part of a human hair and is not discernible by eye.

Scientists of the Max Planck Institute for Polymer Research (MPI-P), in a collaboration with researchers from the Netherlands, the USA and Japan, have succeeded to study the properties of this quasi-liquid layer on ice at the molecular level using advanced surface-specific spectroscopy and computer simulations. The results are published in the latest edition of the scientific journal Proceedings of the National Academy of Science (PNAS).

The team of scientists around Ellen Backus, group leader at MPI-P, investigated how the thin liquid layer is formed on ice, how it grows with increasing temperature, and if it is distinguishable from normal liquid water. These studies required well-defined ice crystal surfaces. Therefore much effort was put into creating ~10 cm large single crystals of ice, which could be cut in such a way that the surface structure was precisely known.
To investigate whether the surface was solid or liquid, the team made use of the fact that water molecules in the liquid have a weaker interaction with each other compared to water molecules in ice. Using their interfacial spectroscopy, combined with the controlled heating of the ice crystal, the researchers were able to quantify the change in the interaction between water molecules directly at the interface between ice and air.

The experimental results, combined with the simulations, showed that the first molecular layer at the ice surface has already molten at temperatures as low as -38° C (235 K), the lowest temperature the researchers could experimentally investigate. Increasing the temperature to -16° C (257 K), the second layer becomes liquid. Contrary to popular belief, the surface melting of ice is not a continuous process, but occurs in a discontinuous, layer-by-layer fashion.

“A further important question for us was, whether one could distinguish between the properties of the quasi-liquid layer and those of normal water” says Mischa Bonn, co-author of the paper and director at the MPI-P. And indeed, the quasi-liquid layer at -4° C (269 K) shows a different spectroscopic response than supercooled water at the same temperature; in the quasi-liquid layer, the water molecules seem to interact more strongly than in liquid water.

The results are not only important for a fundamental understanding of ice, but also for climate science, where much research takes place on catalytic reactions on ice surfaces, for which the understanding of the ice surface structure is crucial.

Max-Planck-Institut für Polymerforschung

The Max Planck Institute for Polymer Research (MPI-P) ranks among the top research centers in the field of polymer science worldwide. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. The institute combines all the necessary specialized expertise - from the creative design of new materials, from their synthesis in the lab to their physical characterization as well as the theoretical understanding of polymer characteristics.
The institute was founded in 1983. More than 500 international people are working at the MPI-P.
More information under: www.mpip-mainz.mpg.de

Publication in „Proceedings of the National Academy of Science (PNAS)

„Experimental and theoretical evidence for bilayer-by- bilayer surface melting of crystalline ice“
M. A. Sánchez, T. Kling, T. Ishiyama, M.-J. van Zadel, P. J. Bisson, M. Mezger, M. N. Jochum, J. D. Cyran, W. J. Smit, H. J. Bakker, M. J. Shultz, A. Morita,
D. Donadio, Y. Nagata, M. Bonn, and E. H. G. Backus
doi:10.1073/pnas.1612893114

Scientific contact:
Dr. Ellen Backus
Max Planck Institute for Polymer Research
Ackermannweg 10
55128 Mainz, Germany
T+49-6131-379536
backus@mpip-mainz.mpg.de

Verena Hochrein | Max-Planck-Institut für Polymerforschung

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>