Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Cells Take Out the Trash

23.04.2014

As people around the world mark Earth Day (April 22) with activities that protect the planet, our cells are busy safeguarding their own environment.

To keep themselves neat, tidy and above all healthy, cells rely on a variety of recycling and trash removal systems. If it weren't for these systems, cells could look like microscopic junkyards—and worse, they might not function properly. Scientists funded by the National Institutes of Health are therefore working to understand the cell's janitorial services to find ways to combat malfunctions.


Office of Biological and Environmental Research of the U.S. Department of Energy Office of Science.

When proteins enter the proteasome, they're chopped into bits for re-use.

Garbage Disposal and Recycling Plant

One of the cell's trash processors is called the proteasome. It breaks down proteins, the building blocks and mini-machines that make up many cell parts. The barrel-shaped proteasome disassembles damaged or unwanted proteins, breaking them into bits that the cell can re-use to make new proteins. In this way, the proteasome is just as much a recycling plant as it is a garbage disposal.

How does the cell know which proteins to keep and which to trash? The 2004 Nobel Prize in chemistry went to three scientists for answering that question. They found that the cell labels its refuse with a tiny protein tag called ubiquitin. Once a protein has the ubiquitin label, the proteasome can grab it, put it inside the barrel, break it down and release the pieces.

Because diseases like Alzheimer's involve the accumulation of excess proteins, researchers are trying to develop medicines to help the proteasome out. They hope such a treatment would keep brain cells clean and healthy.

Scientists are also interested in designing medicines that turn off the proteasome. Cancer cells, for instance, make a lot of abnormal proteins that their proteasomes have to remove. A proteasome-clogging medicine could prevent cancer cells from recycling their own garbage, leaving them without reusable resources for survival and growth. This is the approach behind the proteasome inhibitor drug bortezomib, which is used for the blood cancer multiple myeloma.

Cellular Stomach

Proteins aren't the only type of cellular waste. Cells also have to recycle compartments called organelles when they become old and worn out. For this task, they rely on an organelle called the lysosome, which works like a cellular stomach. Containing acid and several types of digestive enzymes, lysosomes digest unwanted organelles in a process termed autophagy, from the Greek words for "self" and "eat." The multipurpose lysosome also processes proteins, bacteria and other "food" the cell has engulfed.

An inability to make one of the lysosomal enzymes can lead to a rare, life-threatening sickness called a lysosomal storage disease. There are more than 40 different lysosomal storage diseases, depending on the kind of trash that's unprocessed. These diseases can affect many organs, including the brain, heart and bones.

Lysosomes also gobble up viruses, an activity important to fighting infections. A drug that activates lysosomes protects mice from diseases like West Nile virus. It's possible that the same or similar medications might treat diseases in which cellular trash piles up, including Alzheimer's and other diseases of aging.

Scrap Pile

While cells mainly use proteasomes and lysosomes, they have a couple of other options for trash disposal.

Sometimes they simply hang onto their trash, performing the cellular equivalent of sweeping it under the rug. Scientists propose that the cell may pile all the unwanted proteins together in a glob called an aggregate to keep them from gumming up normal cellular machinery.

For example, a protein called islet amyloid polypeptide builds up in aggregates in the pancreas of people with type 2 diabetes. Other proteins form aggregates in certain brain diseases. Scientists are still trying to understand what these trash piles do and whether they're helpful or harmful.

If the garbage can't be digested by lysosomes, the cell can sometimes spit it out in a process called exocytosis. Once outside the cell, the trash may encounter enzymes that can take it apart, or it may simply form a garbage heap called a plaque. Unfortunately, these plaques outside the cell may be harmful, too.

The cell also has ways to toss out some poisons that get inside. This means that cancer cells may pump out cancer drugs that are meant to destroy them, and bacteria may do the same with antibiotics. Scientists are studying how these pumps work, looking for ways to keep the medicines inside where they can do their job.

Further study of the many ways cells take out the trash could lead to new approaches for keeping them healthy and preventing or treating disease.

Learn more:
Inside the Cell Booklet http://publications.nigms.nih.gov/insidethecell/

Shelly Pollard |
Further information:
http://www.nih.gov

Further reports about: Alzheimer's Cells NIGMS NIH Trash bacteria diseases enzymes lysosomes proteasome proteins

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>