Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Cells Take Out the Trash

23.04.2014

As people around the world mark Earth Day (April 22) with activities that protect the planet, our cells are busy safeguarding their own environment.

To keep themselves neat, tidy and above all healthy, cells rely on a variety of recycling and trash removal systems. If it weren't for these systems, cells could look like microscopic junkyards—and worse, they might not function properly. Scientists funded by the National Institutes of Health are therefore working to understand the cell's janitorial services to find ways to combat malfunctions.


Office of Biological and Environmental Research of the U.S. Department of Energy Office of Science.

When proteins enter the proteasome, they're chopped into bits for re-use.

Garbage Disposal and Recycling Plant

One of the cell's trash processors is called the proteasome. It breaks down proteins, the building blocks and mini-machines that make up many cell parts. The barrel-shaped proteasome disassembles damaged or unwanted proteins, breaking them into bits that the cell can re-use to make new proteins. In this way, the proteasome is just as much a recycling plant as it is a garbage disposal.

How does the cell know which proteins to keep and which to trash? The 2004 Nobel Prize in chemistry went to three scientists for answering that question. They found that the cell labels its refuse with a tiny protein tag called ubiquitin. Once a protein has the ubiquitin label, the proteasome can grab it, put it inside the barrel, break it down and release the pieces.

Because diseases like Alzheimer's involve the accumulation of excess proteins, researchers are trying to develop medicines to help the proteasome out. They hope such a treatment would keep brain cells clean and healthy.

Scientists are also interested in designing medicines that turn off the proteasome. Cancer cells, for instance, make a lot of abnormal proteins that their proteasomes have to remove. A proteasome-clogging medicine could prevent cancer cells from recycling their own garbage, leaving them without reusable resources for survival and growth. This is the approach behind the proteasome inhibitor drug bortezomib, which is used for the blood cancer multiple myeloma.

Cellular Stomach

Proteins aren't the only type of cellular waste. Cells also have to recycle compartments called organelles when they become old and worn out. For this task, they rely on an organelle called the lysosome, which works like a cellular stomach. Containing acid and several types of digestive enzymes, lysosomes digest unwanted organelles in a process termed autophagy, from the Greek words for "self" and "eat." The multipurpose lysosome also processes proteins, bacteria and other "food" the cell has engulfed.

An inability to make one of the lysosomal enzymes can lead to a rare, life-threatening sickness called a lysosomal storage disease. There are more than 40 different lysosomal storage diseases, depending on the kind of trash that's unprocessed. These diseases can affect many organs, including the brain, heart and bones.

Lysosomes also gobble up viruses, an activity important to fighting infections. A drug that activates lysosomes protects mice from diseases like West Nile virus. It's possible that the same or similar medications might treat diseases in which cellular trash piles up, including Alzheimer's and other diseases of aging.

Scrap Pile

While cells mainly use proteasomes and lysosomes, they have a couple of other options for trash disposal.

Sometimes they simply hang onto their trash, performing the cellular equivalent of sweeping it under the rug. Scientists propose that the cell may pile all the unwanted proteins together in a glob called an aggregate to keep them from gumming up normal cellular machinery.

For example, a protein called islet amyloid polypeptide builds up in aggregates in the pancreas of people with type 2 diabetes. Other proteins form aggregates in certain brain diseases. Scientists are still trying to understand what these trash piles do and whether they're helpful or harmful.

If the garbage can't be digested by lysosomes, the cell can sometimes spit it out in a process called exocytosis. Once outside the cell, the trash may encounter enzymes that can take it apart, or it may simply form a garbage heap called a plaque. Unfortunately, these plaques outside the cell may be harmful, too.

The cell also has ways to toss out some poisons that get inside. This means that cancer cells may pump out cancer drugs that are meant to destroy them, and bacteria may do the same with antibiotics. Scientists are studying how these pumps work, looking for ways to keep the medicines inside where they can do their job.

Further study of the many ways cells take out the trash could lead to new approaches for keeping them healthy and preventing or treating disease.

Learn more:
Inside the Cell Booklet http://publications.nigms.nih.gov/insidethecell/

Shelly Pollard |
Further information:
http://www.nih.gov

Further reports about: Alzheimer's Cells NIGMS NIH Trash bacteria diseases enzymes lysosomes proteasome proteins

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>