Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How Cells Take Out the Trash


As people around the world mark Earth Day (April 22) with activities that protect the planet, our cells are busy safeguarding their own environment.

To keep themselves neat, tidy and above all healthy, cells rely on a variety of recycling and trash removal systems. If it weren't for these systems, cells could look like microscopic junkyards—and worse, they might not function properly. Scientists funded by the National Institutes of Health are therefore working to understand the cell's janitorial services to find ways to combat malfunctions.

Office of Biological and Environmental Research of the U.S. Department of Energy Office of Science.

When proteins enter the proteasome, they're chopped into bits for re-use.

Garbage Disposal and Recycling Plant

One of the cell's trash processors is called the proteasome. It breaks down proteins, the building blocks and mini-machines that make up many cell parts. The barrel-shaped proteasome disassembles damaged or unwanted proteins, breaking them into bits that the cell can re-use to make new proteins. In this way, the proteasome is just as much a recycling plant as it is a garbage disposal.

How does the cell know which proteins to keep and which to trash? The 2004 Nobel Prize in chemistry went to three scientists for answering that question. They found that the cell labels its refuse with a tiny protein tag called ubiquitin. Once a protein has the ubiquitin label, the proteasome can grab it, put it inside the barrel, break it down and release the pieces.

Because diseases like Alzheimer's involve the accumulation of excess proteins, researchers are trying to develop medicines to help the proteasome out. They hope such a treatment would keep brain cells clean and healthy.

Scientists are also interested in designing medicines that turn off the proteasome. Cancer cells, for instance, make a lot of abnormal proteins that their proteasomes have to remove. A proteasome-clogging medicine could prevent cancer cells from recycling their own garbage, leaving them without reusable resources for survival and growth. This is the approach behind the proteasome inhibitor drug bortezomib, which is used for the blood cancer multiple myeloma.

Cellular Stomach

Proteins aren't the only type of cellular waste. Cells also have to recycle compartments called organelles when they become old and worn out. For this task, they rely on an organelle called the lysosome, which works like a cellular stomach. Containing acid and several types of digestive enzymes, lysosomes digest unwanted organelles in a process termed autophagy, from the Greek words for "self" and "eat." The multipurpose lysosome also processes proteins, bacteria and other "food" the cell has engulfed.

An inability to make one of the lysosomal enzymes can lead to a rare, life-threatening sickness called a lysosomal storage disease. There are more than 40 different lysosomal storage diseases, depending on the kind of trash that's unprocessed. These diseases can affect many organs, including the brain, heart and bones.

Lysosomes also gobble up viruses, an activity important to fighting infections. A drug that activates lysosomes protects mice from diseases like West Nile virus. It's possible that the same or similar medications might treat diseases in which cellular trash piles up, including Alzheimer's and other diseases of aging.

Scrap Pile

While cells mainly use proteasomes and lysosomes, they have a couple of other options for trash disposal.

Sometimes they simply hang onto their trash, performing the cellular equivalent of sweeping it under the rug. Scientists propose that the cell may pile all the unwanted proteins together in a glob called an aggregate to keep them from gumming up normal cellular machinery.

For example, a protein called islet amyloid polypeptide builds up in aggregates in the pancreas of people with type 2 diabetes. Other proteins form aggregates in certain brain diseases. Scientists are still trying to understand what these trash piles do and whether they're helpful or harmful.

If the garbage can't be digested by lysosomes, the cell can sometimes spit it out in a process called exocytosis. Once outside the cell, the trash may encounter enzymes that can take it apart, or it may simply form a garbage heap called a plaque. Unfortunately, these plaques outside the cell may be harmful, too.

The cell also has ways to toss out some poisons that get inside. This means that cancer cells may pump out cancer drugs that are meant to destroy them, and bacteria may do the same with antibiotics. Scientists are studying how these pumps work, looking for ways to keep the medicines inside where they can do their job.

Further study of the many ways cells take out the trash could lead to new approaches for keeping them healthy and preventing or treating disease.

Learn more:
Inside the Cell Booklet

Shelly Pollard |
Further information:

Further reports about: Alzheimer's Cells NIGMS NIH Trash bacteria diseases enzymes lysosomes proteasome proteins

More articles from Life Sciences:

nachricht Flipping molecular attachments amps up activity of CO2 catalyst
06.10.2015 | DOE/Brookhaven National Laboratory

nachricht Safe nanomotors propelled by sugar
06.10.2015 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...
All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

Laser-wielding physicists seize control of atoms' behavior

06.10.2015 | Physics and Astronomy

Flipping molecular attachments amps up activity of CO2 catalyst

06.10.2015 | Life Sciences

More VideoLinks >>>