Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cells take out the trash: the “phospho-kiss of death” deciphered

07.10.2016

Cells never forget to take out the trash. It has long been known that cells tag proteins for degradation by labelling them with ubiquitin, a signal described as “the molecular kiss of death”. Tim Clausen’s group at the Research Institute of Molecular Pathology (IMP) in Vienna identified an analogous system in gram-positive bacteria, where the role of a degradation tag is fulfilled by a little known post-translational modification: arginine phosphorylation. The discovery, which is published online by the journal Nature, opens new avenues for designing antibacterial therapies.

Like in the U2 song title Running to stand still, the apparent steady state of cells belies constant production and removal of proteins within. Although research into protein degradation has lagged behind research into protein synthesis, it is now well appreciated that when it comes to proteins, death is just as important as birth – and as tightly regulated. Each is removed at the right moment and special care is taken to eliminate those that are either damaged or perform functions no longer necessary in a particular context.


Phosphoarginine functions as a protein degradation tag in Gram-positive bacteria analogous to ubiquitin in eukaryotes

The degradation process, which consists of chopping the protein substrate into small fragments, takes place inside compartmentalised proteases – specialised molecular machines often likened to paper shredders. If – as in the eukaryotic ubiquitin-based system – the access to the protease depends on a specific tag that must be carried by the substrate, then the important decision who and when should be eliminated boils down to the timely and selective attachment of tags. The mechanism is elegant, yet scientists working with bacteria have been puzzled to find it used by just one specific branch of their organisms of interest. The current study changes the picture.

Tim Clausen’s lab stumbled upon arginine phosphorylation several years ago while studying how certain bacteria cope with adverse conditions. McsB, a protein involved in this process, turned out to have a unique ability to phosphorylate other proteins on arginine residues. While protein regulation by reversible addition of phosphoryl groups had been the mainstay of biochemistry since the Nobel Prize-winning work of Edwin G. Krebs and Edmond H. Fischer in the 1950s, it was now the first time that it had been observed to involve arginine. Follow-up studies have revealed hundreds of modified proteins in the model organism Bacillus subtilis. Although the modification was observed to be regulated in response to environmental conditions, the function has remained elusive.

“There were several reasons why we thought phosphoarginine might be the ‘bacterial ubiquitin’,” says Tim Clausen, for whom protein degradation has long been an area of intense focus. McsB has been known to be transcriptionally co-regulated with a major protease of the bacterium B. subtilis, ClpCP, and was once proposed to function as its “adaptor” that brings in a specific substrate. Tim speculated that it might in fact work more like a “labeler”, tagging many diverse proteins with a “phospho-kiss of death”. In a series of sophisticated experiments, his group proved the hypothesis to be correct.

“I knew we were on the right track when phosphoarginine showed a strong binding affinity to ClpCP,” says Débora Broch Trentini, a postdoc in the Clausen lab and the first author of the Nature paper. It is this interaction, she adds, that accounts for specificity: proteins marked with phosphoarginine are directly captured by the ClpCP protease and shredded to pieces.

As the discovered system is widely conserved across gram-positive bacteria – a large class that includes the notorious human pathogen Staphylococcus aureus – the study explains previous reports that identified McsB and ClpC as virulence factors. To infect, bacteria must overcome stresses encountered within the host and this in turn relies on efficient degradation of stress-damaged proteins. The discovery from Tim’s lab therefore opens a new perspective on how bacteria-mediated disease could be combated.

"We identified the mechanism. The next step is to block it,” concludes Tim Clausen.

http://www.nature.com/nature/journal/vaap/ncurrent/full/nature20122.html

  • Full bibliographic informationTrentini, DB, et al. (2016) “Arginine phosphorylation marks proteins for degradation by a Clp protease”. Nature Accelerated Article Preview, October 6, 2016.

For further information, please contact:

Heidemarie Hurtl

+43 1 79730 358

hurtl@imp.univie.ac.at

Heidemarie Hurtl | AlphaGalileo

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>