Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How brains surrender to sleep

23.06.2017

Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna study fundamental aspects of sleep in roundworms. Using advanced technologies, they monitor the activity of all nerve cells in the brain while they are falling asleep and waking up. The journal Science publishes their ground-breaking results this week.

Sleep is a universal trait in animals: every nervous system seems to regularly undergo and require states of relaxation, during which brain activity is drastically altered. Sleep is vital, as we experience in our daily lives, but scientists are still debating why this is the case.


Caption: The illustration shows two worms: the top one is sleeping and most of its nerve cells are quiet, the second is awake with many of its nerve cells vigorously active.

IMP

A team of neurobiologists led by Manuel Zimmer of the IMP Vienna used the roundworm C. elegans to study in detail how the brain switches between wakefulness and sleep. Their results suggest that in tired animals sleep is a ground state of the brain that spontaneously establishes itself as long as strong external stimuli from the environment are absent.

Manuel Zimmer compares such a state to a marble resting in a valley; to push it uphill requires some effort, but it will roll back by itself when left on its own. The equivalent is to arouse a sleeping worm, thereby pushing its brain into wakefulness, but if still tired and left unperturbed it will fall back to sleep.

Scientists who deal with complex dynamical systems use the term ‘attractor’ for such processes. ‘We propose this attractor mechanism as an efficient means how overarching states like sleep and wakefulness can propagate throughout an entire brain’, says Zimmer.

Worms as models for sleep research

C. elegans was chosen as a model for sleep research because its nervous system consists of only 302 neurons. It is small enough for advanced microscopy approaches enabling access to the activity of all nerve cells in the brain at single-cell precision. This was key for obtaining new insights when monitoring the widespread reconfigurations that the brain undergoes between wakefulness and sleep.

Another challenge that the scientists faced was to control when worms would fall asleep and wake up. PhD-students Annika Nichols and Tomáš Eichler established an intriguing experimental system using variable oxygen concentrations as a switch. In their natural habitat, C. elegans live in soil where abundant microorganisms keep oxygen levels low.

The researchers showed that under these preferred conditions the worms felt comfortable and could fall asleep, provided they were tired. Nichols and Eichler found that fresh air with atmospheric oxygen content alarms sleeping animals, causing them to rapidly wake up. ‘This opened a door to effectively switch between the sleep and wake states during our experiments’, says Nichols.

A neural meter for tiredness

Nichols went on and recorded the activity of all neurons in the brain while triggering switches between sleep and wakefulness. She found that during sleep, most nerve cells that are vigorously active during wakefulness, become silent. However, a few specific types of nerve cells stay alert. One of these types, termed RIS, was previously shown to promote sleep by excreting a sleep substance. Nichols showed that RIS activity is already elevated in awake animals that are prone to sleep, hinting that it is a measure of how tired the brain is.

Sleep as a default attractor state of the brain

When monitoring the activity of the brain as it fell asleep, Nichols made an interesting discovery: her computer analyses indicated that neuronal network activity spontaneously converged to a quiet and stable state. Originally, the researchers had assumed that RIS cells would force the nervous system into quiescence much like a conductor who silences the orchestra after the final chord. However, the new data suggest that RIS seems to act more like a mediator who negotiates an agreement between all players, followed by a collective action. The advantage of this scenario is that the dramatic changes between wakefulness and sleep can be triggered by rather subtly turning some of the regulatory knobs in the brain.

Despite the many differences between a worm brain and the human brain, these results provide a promising model for studying fundamental principles of brain organisation.

Original Publication

A global brain state underlies C. elegans sleep behavior. Annika L. A. Nichols, Tomáš Eichler, Richard Latham, Manuel Zimmer. Science 356, 23 June 2017.

Illustration An illustration can be downloaded and used free of charge in connection with this press release: https://www.imp.ac.at/news.
Caption: The illustration shows two worms: the top one is sleeping and most of its nerve cells are quiet, the second is awake with many of its nerve cells vigorously active.

About the IMP

The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from nearly 40 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. In particular, research at the IMP addresses topics in molecular and cellular biology; structural biology and biochemistry gene expression and chromosome biology; stem cell biology and development; immunology and cancer; and neuroscience. The IMP is located at the Vienna BioCenter. www.imp.ac.at 

About the Vienna BioCenter

Vienna BioCenter (VBC) is a leading life sciences location in Europe, offering an extraordinary combination of research, business and education on a single campus. About 1.700 employees, 86 research groups, 17 biotech companies, 1.300 students, and scientists from more than 40 nations create a highly dynamic environment of international standards. www.viennabiocenter.org

Weitere Informationen:

https://www.imp.ac.at/news

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Further reports about: IMP Molekulare Pathologie elegans nerve cells nervous system sleep sleep research sleeping

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>