Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How birds get by without external ears

12.12.2014

Scientists discover how birds localize sound sources

Unlike mammals, birds have no external ears. The outer ears of mammals play an important function in that they help the animal identify sounds coming from different elevations. But birds are also able to perceive whether the source of a sound is above them, below them, or at the same level.


Birds can hear without the need for external ears – and now a TUM research team has found out how. (Image: Reddogs / Fotolia)

Now a research team from Technische Universität München (TUM) has discovered how birds are able to localize these sounds, namely by utilizing their entire head. Their findings were published recently in the PLOS ONE journal.

It is springtime, and two blackbirds are having a sing-off. They are both competing for the attentions of a female. But to pick a successful suitor, the female must first be able to find him.

“Because birds have no external ears, it has long been believed that they are unable to differentiate between sounds coming from different elevations,” explains Hans A. Schnyder from the TUM Chair of Zoology. “But a female blackbird should be able to locate her chosen mate even if the source of the serenade is above her.”

Mammals identify sound sources in the vertical plane using their external ears, which absorb, reflect or diffract the sound waves because of their special structure. Their sense of hearing uses this information to determine the elevation of the sound source. But how do birds perceive these differences?

The head does the work of external ears

By studying three avian species – crow, duck and chicken – Schnyder discovered that birds are also able to identify sounds from different elevation angles. It seems that their slightly oval-shaped head transforms sound waves in a similar way to external ears.

“We measured the volume of sounds coming from different angles of elevation at the birds’ eardrums,” relates Schnyder. All sounds originating from the same side as the ear were similarly loud, regardless of their elevation. The ear on the opposite side of the head registered different elevations much more accurately – in the form of different volume levels.

Different volume levels reveal sound sources

It all comes down to the shape of the avian head. Depending on where the sound waves hit the head, they are reflected, absorbed or diffracted. What the scientists discovered was that the head completely screens the sound coming from certain directions. Other sound waves pass through the head and trigger a response in the opposite ear.

The avian brain determines whether a sound is coming from above or below from the different sound volumes in both ears. “This is how birds identify where exactly a lateral sound is coming from – for example at eye height,” continues Schnyder. “The system is highly accurate: at the highest level, birds can identify lateral sounds at an angle of elevation from -30° to +30°.”

Interaction between hearing and sight improves orientation

Why have birds developed sound localization on the vertical plane? Most birds have eyes on the sides of their heads, giving them an almost 360° field of vision. Since they have also developed the special ability to process lateral sounds coming from different elevations, they combine information from their senses of hearing and vision to useful effect when it comes to evading predators.

A few birds of prey like the barn owl have developed a totally different strategy. This species hunts at night, and like humans its eyes are front-facing. The feather ruff on their face modifies sounds in a similar way to external ears. The owl hears sounds coming from in front of it better than the other bird species studied by Schnyder.

So there is a perfect interaction between the information they hear and the information they see - as earlier studies were able to demonstrate. “Our latest findings are pointing in the same direction: it seems that the combination of sight and hearing is an important principle in the evolution of animals,” concludes Schnyder.

Publication:
The Avian Head Induces Cues for Sound Localization in Elevation; Hans A. Schnyder, Dieter Vanderelst, Sophia Bartenstein, Uwe Firzlaff and Harald Luksch; PLOS ONE, November 2014, DOI: 10.1371/journal.pone.0112178

More information:
Interview with Hans A. Schnyder: How birds do get by without external ears? (YouTube)
Pictures for download

Contact:
Technische Universität München
Chair of Zoology
zoologie.wzw.tum.de

Hans A. Schnyder
phone: +49 8161 71-2806
hansa.schnyder@tum.de

Prof. Harald Luksch
phone: +49 8161 71-2801
harald.luksch@wzw.tum.de

Barbara Wankerl | EurekAlert!
Further information:
http://www.tum.de/en/about-tum/news/press-releases/short/article/32029/

Further reports about: TUM Zoology mammals sound waves species volume volume levels waves

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>