Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a virus hides from the immune system

09.12.2015

A new study by the group of Professor Sebastian Springer at Jacobs University helps explain how viruses manage to go undetected when they infect body cells. They have shown that the gp40 protein of the murine cytomegalovirus (mCMV) binds to cellular proteins that are essential for the antiviral immune defense and holds them back inside the cell. This blocks the immune response against mCMV.

Major histocompatibility complex (MHC) class I molecules play a pivotal role in the immune defense against intracellular parasites, such as viruses. Inside the cell, they selectively bind small pieces of the virus that are generated during infection and transport them to the cell surface to display the infection to the immune system, a process called antigen presentation.

Specialized immune cells, the cytotoxic T lymphocytes (CTL), can recognize those viral pieces and, in turn, kill the infected cell in order to fight the infection (see left part of figure).

It is not astonishing that many viruses aim to interfere with antigen presentation by MHC class I molecules to circumvent elimination. Herpesviruses are masters of immunoevasion and possess a series of multiple interfering proteins, the immunoevasins:

The gp40 protein of mCMV inhibits the transport of MHC class I molecules to the cell surface and thus viral recognition by CTL. Instead, MHC class I molecules are retained inside the cell (see right part of figure).

"We have shown for the first time that gp40 binds to MHC class I molecules", says Professor Springer. "We do not yet know how gp40 itself is kept inside the cell, but we believe that it uses another protein as some sort of anchor." The researchers identified a region in the gp40 protein, the linker, which probably binds to this unknown cellular retention factor (see right part of figure).

"It is an amazingly effective strategy for a virus to escape from the immune response", concludes Professor Springer. "Cytomegaloviruses and other herpesviruses infect humans and animals and cause many diseases. We need to understand more about immune escape so that effective treatments can be designed."

The findings will soon be published in the “Journal of Cell Science”. Linda Janßen, Venkat Raman Ramnarayan, Mohamed Aboelmagd, Maria Iliopoulou, Zeynep Hein, Irina Majoul, Susanne Fritzsche, Anne Halenius, and Sebastian Springer: “The murine cytomegalovirus immunoevasin gp40 binds MHC class I molecules to retain them in the early secretory pathway”, Journal of Cell Science, 2015. The study was financed in part by the Tönjes Vagt Foundation of Bremen.

Contact:
Sebastian Springer | Professor of Biochemistry and Cell Biology
s.springer@jacobs-university.de | Tel.: +49 421 200- 3243

About Jacobs University:
Jacobs University is a private, independent, English-language university in Bremen. Young people from all over the world study there on Bachelor’s, Master’s and PhD courses. Jacobs University is international and trans-discipline: research and teaching do not pursue one single pathway, but instead approach issues from the viewpoints of different disciplines. This is what makes Jacobs’ graduates highly sought-after for employment in successful international careers.

http://www.jacobs-university.de

Kristina Logemann | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>