Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a virus hides from the immune system

09.12.2015

A new study by the group of Professor Sebastian Springer at Jacobs University helps explain how viruses manage to go undetected when they infect body cells. They have shown that the gp40 protein of the murine cytomegalovirus (mCMV) binds to cellular proteins that are essential for the antiviral immune defense and holds them back inside the cell. This blocks the immune response against mCMV.

Major histocompatibility complex (MHC) class I molecules play a pivotal role in the immune defense against intracellular parasites, such as viruses. Inside the cell, they selectively bind small pieces of the virus that are generated during infection and transport them to the cell surface to display the infection to the immune system, a process called antigen presentation.

Specialized immune cells, the cytotoxic T lymphocytes (CTL), can recognize those viral pieces and, in turn, kill the infected cell in order to fight the infection (see left part of figure).

It is not astonishing that many viruses aim to interfere with antigen presentation by MHC class I molecules to circumvent elimination. Herpesviruses are masters of immunoevasion and possess a series of multiple interfering proteins, the immunoevasins:

The gp40 protein of mCMV inhibits the transport of MHC class I molecules to the cell surface and thus viral recognition by CTL. Instead, MHC class I molecules are retained inside the cell (see right part of figure).

"We have shown for the first time that gp40 binds to MHC class I molecules", says Professor Springer. "We do not yet know how gp40 itself is kept inside the cell, but we believe that it uses another protein as some sort of anchor." The researchers identified a region in the gp40 protein, the linker, which probably binds to this unknown cellular retention factor (see right part of figure).

"It is an amazingly effective strategy for a virus to escape from the immune response", concludes Professor Springer. "Cytomegaloviruses and other herpesviruses infect humans and animals and cause many diseases. We need to understand more about immune escape so that effective treatments can be designed."

The findings will soon be published in the “Journal of Cell Science”. Linda Janßen, Venkat Raman Ramnarayan, Mohamed Aboelmagd, Maria Iliopoulou, Zeynep Hein, Irina Majoul, Susanne Fritzsche, Anne Halenius, and Sebastian Springer: “The murine cytomegalovirus immunoevasin gp40 binds MHC class I molecules to retain them in the early secretory pathway”, Journal of Cell Science, 2015. The study was financed in part by the Tönjes Vagt Foundation of Bremen.

Contact:
Sebastian Springer | Professor of Biochemistry and Cell Biology
s.springer@jacobs-university.de | Tel.: +49 421 200- 3243

About Jacobs University:
Jacobs University is a private, independent, English-language university in Bremen. Young people from all over the world study there on Bachelor’s, Master’s and PhD courses. Jacobs University is international and trans-discipline: research and teaching do not pursue one single pathway, but instead approach issues from the viewpoints of different disciplines. This is what makes Jacobs’ graduates highly sought-after for employment in successful international careers.

http://www.jacobs-university.de

Kristina Logemann | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>