Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hotspots for biogenesis of small RNA molecules in plant cells discovered

15.03.2012
Scientists at Heidelberg University study fine-tuning of protein production

Throughout their life, plants form leaves and side roots. These two types of organs have something in common: their development is finely tuned by small regulatory RNA molecules, the trans-acting short interfering RNAs (ta-siRNAs). Scientists Dr. Alexis Maizel and Virginie Jouannet at Heidelberg University‘s Centre for Organismal Studies were able to demonstrate how and where within the plant cell these ta-siRNAs are produced. They succeeded in identifying hotspots for the biogenesis of these special RNA molecules. The results of this study have been published in the “EMBO Journal”.


On the left, a normal mouse-ear cress (Arabidopsis) plant, and on the right a plant in which ta-siRNA formation is compromised. The leaf structure of the plant is abnormal. Credits: Alexis Maizel, Virginie Jouannet

The formation of plant organs depends on the presence of proteins that allow cells to divide and take on new shapes and characteristics. The most straightforward route to protein production begins when genes are activated and transcribed into messenger RNAs that are then translated into proteins. However, cells often fine-tune their population of proteins by producing short interfering RNAs (siRNAs): small regulatory molecules that dock onto messenger RNA and cause them to be broken down before they can be used for protein production. Researchers already knew that ta-siRNAs, a type of siRNA, fine-tune the formation of leaves and the growth of side roots by blocking the production of specific proteins. What remained unknown, however, was exactly where in the plant cell the ta-siRNAs were produced.

Ta-siRNAs are created from longer RNA molecules that are whittled down by a complex of other molecules. One essential component of this cutting machine is a protein called AGO7. The Heidelberg scientists have uncovered that AGO7 accumulates in foci, called siRNA bodies, located in the cytoplasm of the cells. SiRNA bodies also contain all the other enzymes needed for the formation of ta-siRNAs. “These foci are therefore hotspots for the formation of the siRNAs, that is the small, regulatory RNA molecules”, explains Virginie Jouannet, a PhD student in Dr. Maizel’s group. In addition, the researchers were able to show that AGO7 could not longer fulfil its functions when released from the siRNA bodies, resulting in problems in the development of the plant.

Two other observations caught the attention of the researchers. For one thing, the siRNA bodies are closely linked to the network of membranes that the cell uses to transport and secrete proteins. “Interestingly, these foci also host viruses and plants defend themselves against viruses using siRNAs”, says Dr. Maizel. “These results reveal a hitherto unknown role for membranes in the biogenesis of RNA and suggest that the generation of siRNA can occur only in specific locations of the cell.”

Dr. Maizel leads an independent research group at the Centre for Organismal Studies at Heidelberg University and is a member of the university’s CellNetworks Cluster of Excellence. Collaborating on the research project were scientists from the Institut des Sciences du Végétal at the Centre National de la Recherche Scientifique (CNRS) in Gif-sur-Yvette as well as the Institut Jean-Pierre Bourgin at the Institut National de la Recherche Agronomique (INRA) in Versailles (France).

For information online, see http://www.cos.uni-heidelberg.de/index.php/independent/a.maizel?l=_e

Original publication:
V. Jouannet, A.B. Moreno, T. Elmaan, H. Vaucheret, M.D. Crespi & A. Maizel: Cytoplasmic Arabidopsis AGO7 accu¬mulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis, The EMBO Journal, 10 February 2012, doi:10.1038/emboj.2012.20
Contact:
Dr. Alexis Maizel
Centre for Organismal Studies
Phone: +49 6221 54-6456
alexis.maizel@cos.uni-heidelberg.de
Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>