Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From hot springs to HIV, same protein complexes are hijacked to promote viruses

11.06.2013
Thermophiles, humans share ancient machinery used in cell division
Biologists from Indiana University and Montana State University have discovered a striking connection between viruses such as HIV and Ebola and viruses that infect organisms called archaea that grow in volcanic hot springs. Despite the huge difference in environments and a 2 billion year evolutionary time span between archaea and humans, the viruses hijack the same set of proteins to break out of infected cells.

In eukaryotes -- the group that includes plants and animals -- and in archaea -- micro-organisms with no defined nucleus in their cellular construction -- viruses co-opt a group of important protein complexes called the Endosomal Sorting Complexes Required for Transport, or ESCRT.

The researchers were studying Sulfolobus turreted icosahedral virus, or STIV, which infects Sulfolobus solfataricus, a species of archaea called a thermophile that can be found in volcanic springs, such those in Yellowstone National Park. Thermophiles are micro-organisms that survive in extremely hot environments. The researchers found that, as with a range of viruses that infect humans, STIV is also dependent upon its host's ESCRT machinery to complete its life cycle.

"The new work yields insight into the evolution of the relationship between hosts and viruses and, more importantly, presents us with a new and simple model system to study how viruses can hijack and utilize cellular machineries," said Stephen D. Bell, professor in the IU Department of Molecular and Cellular Biochemistry and Department of Biology. Bell is co-lead author on the paper that appears today in early online editions of the Proceedings of the National Academy of Sciences.
The researchers looked for interactions between STIV and ESCRT proteins by using a technique in molecular biology called two-hybrid screening, which identifies binding interactions between two proteins or a protein and a DNA molecule. After finding two examples where viral proteins (the major capsid protein B345 and the viral protein C92) interacted with ESCRT proteins (SSO0619 and SSO0910), epiflouresence microscopy and transmission electron microscopy were used to determine exactly where ESCRT protein components localized in STIV-infected cells.

Epiflouresence microscopy uncovered spots of the ESCRT protein Vps4 in STIV-infected S. solfataricus cells, while no Vps4 was found after similar analysis in uninfected cells. In testing with transmission electron microscopy, the researchers identified Vps4 localized in the seven-sided pyramid-like structures that form in the membrane of S. solfataricus prior to viruses causing cell breakdown when the viral protein C92 expressed. No localization of Vps4 was found in similar cells where C92 was repressed.
The work shows that Vps4 is recruited to viral budding sites -- those seven-sided pyramid-like structures -- in the S. solfataricus thermophile. Significantly, other scientists have shown that the Vps4 protein of the eukaryotic ESCRT machinery localizes to the HIV budding site in humans.

"We believe the ESCRT machinery plays two roles in STIV biology. First, by virtue of interaction between the viral B345 protein and the host protein SSO0619, ESCRT aids in the construction of the STIV viral particles," Bell said. "Second, the strong association we find between the pyramid structures formed by C92 and ESCRT's Vps4 protein allows us to hypothesize that the ESCRT machinery plays a vital role in opening those pyramid exit structures that then leads to cell disruption and the release of viral progeny."

Just as the ESCRT machinery in plants and animals plays a key role in cell division, Bell's lab has previously shown that the same is true for that similar yet less-complicated ESCRT complex in archaea. Also of importance, Bell added, is that the ESCRT apparatus both in eukaryotes and in archaea like S. solfataricus is co-opted by viruses.

"These parallels support the idea that the cellular ESCRT is ancient and that it is likely to have evolved prior to archaea and eukarya separating to become different domains of life," Bell said.

Scientists date archaea back to 3.7 billion years, while the oldest eukaryote fossils date back to 1.7 billion years.

"Functional interplay between a virus and the ESCRT machinery in Archaea," published June 10, 2013, in Proceedings of the National Academy of Sciences, was co-lead authored by Mark J. Young of Montana State University, and co-authored by Jamie C. Snyder and Susan K. Brumfield of Montana State University and Rachel Y. Samson of Indiana University, a graduate student scientist in the Bell laboratory.

Funding for the work came from the National Science Foundation, the National Aeronautics and Space Administration, the Wellcome Trust and the IU College of Arts and Sciences.

For more information or to speak with Bell, please contact Steve Chaplin, IU Communications, at 812-856-1896 or stjchap@iu.edu.

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>