Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot Attraction in Bimetals

20.01.2012
A cyano-bridged vanadium–niobium bimetal assembly with a Curie temperature of 210 K

Cyano-bridged bimetal assemblies attract attention because of their magnetic properties such as photomagnetization, humidity-induced magnetization, and nonlinear magneto-optical effect, which make them suitable for many applications.

A high Curie temperature is an asset for the use of such magnetic compounds in functional materials. Hexa-, hepta-, and octacyanometalates have been shown to have high Curie temperatures as a result of the high coordination number of their metal centers and the large superexchange interactions due to their diffuse 4d or 5d orbitals. Shin-ichi Ohkoshi and his co-workers at the University of Tokyo report the compound with the highest Curie temperature among octacyano-bridged bimetal assemblies in the Short Communication published in the European Journal of Inorganic Chemistry.

On the basis of initial studies indicating that an increased stoichiometry of vanadium(II) led to a higher Curie temperature in vanadium hexacyanochromate systems, Ohkoshi et al. used a small amount of VIII as catalyst to convert a higher proportion of VII in a similar system.

The magnetic properties of the resulting octacyano-bridged vanadium–niobium bimetal assembly were investigated. The compound, whose formula was determined to be K0.59VII1.59VIII0.41[NbIV(CN)8] •(SO4)0.50•6.9H2O, is ferrimagnetic, and the spins on VII and VIII are antiparallel with respect to the spin on NbIV. Its Curie temperature is 210 K. This high value is a result of the enhanced superexchange interaction through the VII–NC–NbIV pathway.

This study reports a strategy to synthesize magnetic materials with high Curie temperature to enhance the suitability of their magnetic properties for applications.

About the Author
Professor Shin-ichi Ohkoshi works in the Department of Chemistry, the University of Tokyo, and the Japan Science and Technology Agency. The Ohkoshi laboratory is specialized in the design and synthesis of magnetic materials with new and enhanced functionalities.
Author: Shin-ichi Ohkoshi, University of Tokyo (Japan), http://www.chem.s.u-tokyo.ac.jp/users/ssphys/english/index.html
Title: A Cyano-Bridged Vanadium–Niobium Bimetal Assembly Exhibiting a High Curie Temperature of 210 K

European Journal of Inorganic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejic.201101219

Shin-ichi Ohkoshi | Wiley-VCH
Further information:
http://www.wiley-vch.de
http://www.chem.s.u-tokyo.ac.jp/users/ssphys/english/index.html

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>