Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Host Change Alters Toxic Cocktail

10.03.2011
Gene modification: Leaf beetle larvae attacking birch trees produce toxic cocktails that differ from the ones produced by conspecifics living on willows

Leaf beetles fascinate us because of their amazing variety of shapes and rich coloring. Their larvae, however, are dangerous plant pests. Larvae of the leaf beetle Chrysomela lapponica attack two different tree species: willow and birch. To fend off predator attacks, the beetle larvae produce toxic butyric acid esters or salicylaldehyde, whose precursors they ingest with their leafy food.


Leaf beetle Chrysomela lapponica
MPI for Chemical Ecology/Kirsch


Chrysomela lapponica larva on a birch leaf. The larva emits toxic secretions, visible as vesicles, from their defensive glands as a chemical protection against predators.
MPI for Chemical Ecology/Ploss

Scientists of the Max Planck Institute for Chemical Ecology in Jena, Germany, now found that a fundamental change in the genome has emerged in beetles that have specialized on birch: The activity of the salicylaldehyde producing enzyme salicyl alcohol oxidase (SAO) is missing in these populations, whereas it is present in willow feeders. For birch beetles the loss of this enzyme and hereby the loss of salicylaldehyde is advantageous: the enzyme is not needed anymore because its substrate salicyl alcohol is only present in willow leaves, but not in birch.

Birch beetles can therefore save resources instead of costly producing the enzyme. First and foremost, however, the loss of salicylaldehyde also means that birch feeding populations do not betray themselves to their own enemies anymore, who can trace them because of the odorous substance. (PNAS Early Edition, DOI 10.1073/pnas.1013846108)

Defensive glands and toxic cocktails

Beetle larvae are part of a food chain. They are attacked by predatory insects and parasites, such as hover flies and bugs, as well as infested by bacteria and fungi. To protect themselves some leaf beetle larvae have developed interesting defense mechanisms, which function externally and metabolically: In case of danger, they emit substances from their defensive glands in form of vesicles (see picture; a short video is also available on http://www.ice.mpg.de/ext/735.html). These defensive secretions contain toxins that the larvae sequester from chemical precursors they have ingested with their plant food. The toxin precursors pass the larva’s midgut and reach the defensive glands via a sophisticated molecular transport system. Only a few chemical steps are necessary to produce the actual toxin in the gland.

Dependent on the host plant

Most leaf beetle species only attack one single plant species to feed and reproduce. On the one hand, the uptake of special plant molecules as substrates for toxin-producing enzymes is economical for the beetle larvae; on the other hand, however, the leaf beetles become strongly dependent on the host plant and its specific metabolites. Willows of the Salicaceae family have up to 5 percent glycosylated salicyl alcohol (Salicin) in their leaves, whereas birch trees do not contain these compounds at all. Hence, researchers in the Department of Bioorganic Chemistry of the institute in Jena have investigated how Chrysomela lapponica leaf beetles adapted to both birch and willow as host trees.

First they analyzed in a simple but decisive experiment whether the loss of salicylaldehyde in birch feeders is only due to the fact that the precursor Salicin is not available in birch. To test this they offered willow leaves to hungry leaf beetle larvae they had collected from birch trees. “The beetles were able to ingest Salicin from willow leaves; salicyl alcohol was also detected in their defensive secretions. However, the alcohol was not transformed to an aldehyde; this means that birch feeders lack the enzyme salicyl alcohol oxidase, which is responsible for the oxidation from alcohol to aldehyde,” explains Roy Kirsch, who addresses these topics in his PhD project.

Alternative splicing inactivates enzyme in birch feeders

Biochemical analyses revealed that gland secretions of salicylaldehyde producing willow beetles contain the enzyme salicyl alcohol oxidase in strikingly large amounts. The scientists labeled it SAO-W (W: willow). Using corresponding DNA sequence data they isolated and characterized the SAO-B (B: birch) encoding gene from birch feeders. They found that the amino acid sequences of both enzymes are 97 percent identical. However, SAO-B has become inactive because 27 amino acids at the beginning of the polypeptide chain are missing. This was confirmed after heterologous expression in an insect cell culture and subsequent functional tests. Further studies on the defensive glands of birch feeders showed that the amount of messenger RNA (mRNA) of the SAO-B gene was reduced by 1000 times compared to willow beetles; the protein and its enzyme activity were below the detection level. The lack of enzyme activity is caused by a mutation in the SAO-B gene located in the area of the second exon/intron junction. The mutation is responsible for changes in mRNA processing, so-called alternative splicing, which leads to the loss of 27 amino acids in the SAO-B enzyme.

The scientists conclude that, originally, Chrysomela lapponica used willows exclusively as host plants and later shifted to birch trees as well. “It is still unclear, whether the gene mutation has enabled the host plant shift from willow to birch or whether it was adapted in the course of evolution after the shift to birch had occurred,” says Wilhelm Boland, the leader of the study. Genetic analysis of further SAO genes from Chrysomela leaf beetle species will allow a better understanding of these processes. [JWK, AO]

Original Publication:
Kirsch, R., Vogel, H., Muck, A., Reichwald, K., Pasteels, J. M., Boland, W.
Host plant shifts affect a major defense enzyme in Chrysomela lapponica.
Proceedings of the National Academy of Sciences USA, Early Edition, DOI 10.1073/pnas.1013846108.
Further Information:
Prof. Dr. Wilhelm Boland, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena. Phone: +49 (0)3641- 57-1200, -1201; e-mail: boland@ice.mpg.de
Pictures:
Download: http://www.ice.mpg.de/ext/735.html
or contact
Angela Overmeyer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena. Phone: +49 (0)3641- 57 2110; e-mail: overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | idw
Further information:
http://www.ice.mpg.de
http://www.ice.mpg.de/ext/735.html

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>