Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone in fruit flies sheds light on diabetes cure, weight-loss drug for humans

09.08.2012
Manipulating a group of hormone-producing cells in the brain can control blood sugar levels in the body – a discovery that has dramatic potential for research into weight-loss drugs and diabetes treatment.

In a paper published in the October issue of Genetics and available online now, neurobiologists at Wake Forest University examine how fruit flies (Drosophila) react when confronted with a decreased diet.

Reduced diet or starvation normally leads to hyperactivity in fruit flies – a hungry fly buzzes around feverishly, looking for more food. That happens because an enzyme called AMP-activated kinase stimulates the secretion of the adipokinetic hormone, which is the functional equivalent of glucagon. This hormone acts opposite of insulin, as it tells the body to release the sugar, or food, needed to fuel that hyperactivity. The body uses up its energy stores until it finds food.

But when Wake Forest's Erik Johnson, an associate professor of biology, and his research team turned off AMP-activated kinase, the cells decreased sugar release and the hyperactive response stopped almost completely – even in the face of starvation.

"Since fruit flies and humans share 30 percent of the same genes and our brains are essentially wired the same way, it suggests that this discovery could inform metabolic research in general and diabetes research specifically," said Johnson, the study's principal investigator. "The basic biophysical, biochemical makeup is the same. The difference in complexity is in the number of cells. Why flies are so simple is that they have approximately 100,000 neurons versus the approximately 11 billion in humans."

Medical advances as a result of this research might include:

Diabetes research: Adipokinetic hormone is the insect equivalent to the hormone glucagon in the human pancreas. Glucagon raises blood sugar levels; insulin reduces them. However, it is difficult to study glucagon systems because the pancreatic cells are hard to pull apart. Studying how this similar system works in the fruit fly could pave the way to a drug that targets the cells that cause glucagon to tell the body to release sugar into the blood – thus reducing the need for insulin shots in diabetics.

Weight-loss drugs: An "exercise drug" would turn on all AMP-activated kinase in the body and trick the body into thinking it was exercising. "Exercise stimulates AMP-activated kinase, so manipulation of this molecule may lead to getting the benefits of exercise without exercising," Johnson said. In previous research published in the online journal PLoS ONE, Johnson and his colleagues found that, when you turn off AMP-activated kinase, you get fruit flies that "eat a lot more than normal flies, move around a lot less, and end up fatter."

Johnson's current study is funded by the National Science Foundation and the National Institutes of Health. Co-authors are Jason Braco, Emily Gillespie and Gregory Alberto of Wake Forest, and Jay Brenman of the University of North Carolina-Chapel Hill.

Katie Neal | EurekAlert!
Further information:
http://www.wfu.edu

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>