Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone acting as ‘molecular glue’ could boost plant immune systems

07.10.2010
The discovery of a hormone acting like molecular glue could hold a key to bolstering plant immune systems and understanding how plants cope with environmental stress.

The study, which is featured in the Oct. 6 issue of Nature, reveals how the plant hormone jasmonate binds two proteins together – an emerging new concept in hormone biology and protein chemistry. The study also identifies the receptor’s crystal structure to provide the first molecular view of how plants ward off attacks by insects and pathogens.

In short, the work explains how a highly dynamic form of plant immunity is triggered, said Gregg Howe, biochemistry and molecular biology professor, who worked with fellow MSU professor Sheng Yang He on the study. The study is a collaboration between the MSU-Department of Energy Plant Research Laboratory and the University of Washington.

“In many respects, this receptor is novel in how it binds its target hormone to switch on gene expression,” Howe said. “Jasmonate appears to act as molecular glue that sticks two proteins together, which sets off a chain of events leading to the immune response. Determining the structure of the receptor solves a big missing piece of the puzzle.”

Earlier research conducted by Howe and He helped to unveil the mechanism of action of jasmonate, the last major plant hormone to have its signaling pathway decoded. When a plant is attacked, the jasmonate signal causes direct interaction between a family of JAZ repressor proteins and the F-box protein COI1, which works to eliminate JAZ proteins so the plant can mount a defense.

Reconstructing the molecular mechanism of jasmonate perception revealed a multicomponent signaling hub. Instead of working as a single protein, which is typical of most receptors, this new receptor is actually a co-receptor complex that consists of COI1, JAZ and a newly discovered third component, inositol pentakisphosphate, Howe said.

Now that researchers understand the structure, they can design new hormone derivatives or other small molecules that can trigger a desired response. Such compounds could help to increase agricultural productivity by aiding plants in resisting bugs and diseases, he added.

The Nature study shows that plants and animals use fundamentally different mechanisms to perceive this type of fatty acid-derived hormone. Humans have prostaglandin hormones, which are structurally similar to jasmonates and also play a role in immune responses. So this study may hold potential benefits for humans as well.

“Plants offer a rich opportunity to understand basic biological processes that are relevant to human health,” Howe said. “The new structural insight into jasmonate perception could have practical applications in medicine, including the design of drugs that stick two proteins together.”

The research was funded by the National Institutes of Health and the U.S. Department of Energy and supported by the Michigan Agricultural Experiment Station.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: Hormon MSU Nature Immunology biological process immune response plant hormone

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>