Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins team discovers sweet way to detect prediabetes

09.07.2010
Having discovered a dramatic increase of an easy-to-detect enzyme in the red blood cells of people with diabetes and prediabetes, Johns Hopkins scientists say the discovery could lead to a simple, routine test for detecting the subtle onset of the disease, before symptoms or complications occur and in time to reverse its course.

Pilot studies, published online April 22 in Diabetes, show the enzyme O-GlcNAcase is up to two to three times higher in people with diabetes and prediabetes than in those with no disease: “That’s a big difference, especially in an enzyme that’s as tightly regulated as this one is,” says Gerald Hart, Ph.D., the DeLamar Professor and director of biological chemistry at the Johns Hopkins School of Medicine.

Building on their previous research, which showed how an abundant but difficult-to-detect sugar switch known as O-GlcNAc (pronounced oh-GLICK-nack) responded to nutrients and stress, the Hopkins team knew this small molecule was elevated in the red cells of patients with diabetes. “The question was whether the elevation happened in the earliest stages of diabetes and therefore might have value as a diagnostic tool,” Hart said.

To find out, Kyoungsook Park, a graduate student of biological chemistry working in Hart’s lab, focused on levels of O-GlcNAcase, an enzyme that removes O-GlcNAc in red cells. O-GlcNAc modifies many of the cell’s proteins to control their functions in response to nutrients and stress. Nutrients, such as glucose and lipids, increase the extent of O-GlcNAc modification of proteins affecting their activities. When the extent of O-GlcNAc attached to proteins becomes too high, as occurs in diabetes, it is harmful to the cell.

First, Park purified human red blood cells by depleting them of their main constituent, hemoglobin. The samples had been collected by two sources — the National Institute of Diabetes, Digestive and Kidney Diseases, or NIDDK, and Johns Hopkins Diabetes Center in collaboration with Christopher D. Saudek, M.D. — and characterized as normal (36 samples), prediabetes (13 samples) and type 2 diabetes (53 samples) according to traditional tests that require patient fasting. Defined as normal hemoglobin A1c with impaired fasting glucose, prediabetes is an intermediate state of altered glucose metabolism with a heightened risk of developing type 2 diabetes and other associated complications.

Then, she measured and compared the amount of the enzyme protein within the red cells associated with the sugar molecule, O-GlcNAc.

“When I checked the enzyme levels and saw how dramatically different they were between the prediabetic cells and the controls, I thought I did something wrong,” Park says. “I repeated the test five times until I could believe it myself.”

Hart speculates that in diabetes and prediabetes, it’s not a good thing for the increased amount of sugar to be attached to proteins, so the cell is responding by elevating the enzyme that gets rid of it.

“This is an example of how basic research is directly affecting a serious disease,” Hart says, adding that his team’s pilot studies encourage further investigation of a method that potentially could fill the void that currently exists for an easy, accurate routine test for prediabetes. “Only a much larger clinical trial will determine if, by measuring O-GlcNAcase, we can accurately diagnose prediabetes.”

In addition to Park and Hart, Chistopher D. Saudek, also of Johns Hopkins University School of Medicine, is an author of the paper.

Funding was provided by the NIH NIDDK.

On the Web:

Hart lab: http://biolchem.bs.jhmi.edu/pages/facultydetail.aspx?AspXPage=g_A13E315C00C04DFD949FD3E57BA45181:ID%3D83

Diabetes: http://diabetes.diabetesjournals.org/

Johns Hopkins Comprehensive Diabetes Center: http://www.hopkinsmedicine.org/diabetes/

Media Contacts:
Maryalice Yakutchik; 443-287-2251; myakutc1@jhmi.edu
Audrey Huang; 410-614-5105; audrey@jhmi.edu

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Diabetes Hopkins Medicine O-GlcNAc O-GlcNAcase blood cell type 2 diabetes

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>