Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins team discovers sweet way to detect prediabetes

09.07.2010
Having discovered a dramatic increase of an easy-to-detect enzyme in the red blood cells of people with diabetes and prediabetes, Johns Hopkins scientists say the discovery could lead to a simple, routine test for detecting the subtle onset of the disease, before symptoms or complications occur and in time to reverse its course.

Pilot studies, published online April 22 in Diabetes, show the enzyme O-GlcNAcase is up to two to three times higher in people with diabetes and prediabetes than in those with no disease: “That’s a big difference, especially in an enzyme that’s as tightly regulated as this one is,” says Gerald Hart, Ph.D., the DeLamar Professor and director of biological chemistry at the Johns Hopkins School of Medicine.

Building on their previous research, which showed how an abundant but difficult-to-detect sugar switch known as O-GlcNAc (pronounced oh-GLICK-nack) responded to nutrients and stress, the Hopkins team knew this small molecule was elevated in the red cells of patients with diabetes. “The question was whether the elevation happened in the earliest stages of diabetes and therefore might have value as a diagnostic tool,” Hart said.

To find out, Kyoungsook Park, a graduate student of biological chemistry working in Hart’s lab, focused on levels of O-GlcNAcase, an enzyme that removes O-GlcNAc in red cells. O-GlcNAc modifies many of the cell’s proteins to control their functions in response to nutrients and stress. Nutrients, such as glucose and lipids, increase the extent of O-GlcNAc modification of proteins affecting their activities. When the extent of O-GlcNAc attached to proteins becomes too high, as occurs in diabetes, it is harmful to the cell.

First, Park purified human red blood cells by depleting them of their main constituent, hemoglobin. The samples had been collected by two sources — the National Institute of Diabetes, Digestive and Kidney Diseases, or NIDDK, and Johns Hopkins Diabetes Center in collaboration with Christopher D. Saudek, M.D. — and characterized as normal (36 samples), prediabetes (13 samples) and type 2 diabetes (53 samples) according to traditional tests that require patient fasting. Defined as normal hemoglobin A1c with impaired fasting glucose, prediabetes is an intermediate state of altered glucose metabolism with a heightened risk of developing type 2 diabetes and other associated complications.

Then, she measured and compared the amount of the enzyme protein within the red cells associated with the sugar molecule, O-GlcNAc.

“When I checked the enzyme levels and saw how dramatically different they were between the prediabetic cells and the controls, I thought I did something wrong,” Park says. “I repeated the test five times until I could believe it myself.”

Hart speculates that in diabetes and prediabetes, it’s not a good thing for the increased amount of sugar to be attached to proteins, so the cell is responding by elevating the enzyme that gets rid of it.

“This is an example of how basic research is directly affecting a serious disease,” Hart says, adding that his team’s pilot studies encourage further investigation of a method that potentially could fill the void that currently exists for an easy, accurate routine test for prediabetes. “Only a much larger clinical trial will determine if, by measuring O-GlcNAcase, we can accurately diagnose prediabetes.”

In addition to Park and Hart, Chistopher D. Saudek, also of Johns Hopkins University School of Medicine, is an author of the paper.

Funding was provided by the NIH NIDDK.

On the Web:

Hart lab: http://biolchem.bs.jhmi.edu/pages/facultydetail.aspx?AspXPage=g_A13E315C00C04DFD949FD3E57BA45181:ID%3D83

Diabetes: http://diabetes.diabetesjournals.org/

Johns Hopkins Comprehensive Diabetes Center: http://www.hopkinsmedicine.org/diabetes/

Media Contacts:
Maryalice Yakutchik; 443-287-2251; myakutc1@jhmi.edu
Audrey Huang; 410-614-5105; audrey@jhmi.edu

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Diabetes Hopkins Medicine O-GlcNAc O-GlcNAcase blood cell type 2 diabetes

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>