Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins Scientists Turn on Fountain of Youth in Yeast

24.11.2011
Collaborations between Johns Hopkins and National Taiwan University researchers have successfully manipulated the life span of common, single-celled yeast organisms by figuring out how to remove and restore protein functions related to yeast aging.

A chemical variation of a “fuel-gauge” enzyme that senses energy in yeast acts like a life span clock: It is present in young organisms and progressively diminished as yeast cells age.

In a report in the September 16 edition of Cell, the scientists describe their identification of a new level of regulation of this age-related protein variant, showing that when they remove it, the organism’s life span is cut short and when they restore it, life span is dramatically extended.

In the case of yeast, the discovery reveals molecular components of an aging pathway that appears related to one that regulates longevity and lifespan in humans, according to Jef Boeke, Ph.D., professor of molecular biology, genetics and oncology, and director of the HiT Center and Technology Center for Networks and Pathways, Johns Hopkins University School of Medicine.

“This control of longevity is independent of the type described previously in yeast which had to do with calorie restriction,” Boeke says. “We believe that for the first time, we have a biochemical route to youth and aging that has nothing to do with diet.” The chemical variation, known as acetylation because it adds an acetyl group to an existing molecule, is a kind of “decoration” that goes on and off a protein — in this case, the protein Sip2 — much like an ornament can be put on and taken off a Christmas tree, Boeke says. Acetylation can profoundly change protein function in order to help an organism or system adapt quickly to its environment. Until now, acetylation had not been directly implicated in the aging pathway, so this is an all-new role and potential target for prevention or treatment strategies, the researchers say.

The team showed that acetylation of the protein Sip2 affected longevity defined in terms of how many times a yeast cell can divide, or “replicative life span.” The normal replicative lifespan in natural yeast is 25. In the yeast genetically modified by researchers to restore the chemical modification, life span extended to 38, an increase of about 50 percent.

The researchers were able to manipulate the yeast life span by mutating certain chemical residues to mimic the acetylated and deacetylated forms of the protein Sip2. They worked with live yeast in a dish, measuring and comparing the life spans of natural and genetically altered types by removing buds from the yeast every 90 minutes. The average lifespan in normal yeast is about 25 generations, which meant the researchers removed 25 newly budded cells from the mother yeast cell. As yeast cells age, each new generation takes longer to develop, so each round of the experiment lasted two to four weeks.

“We performed anti-aging therapy on yeast,” says the study’s first author, Jin-Ying Lu, M.D., Ph.D., of National Taiwan University. “When we give back this protein acetylation, we rescued the life span shortening in old cells. Our next task is to prove that this phenomenon also happens in mammalian cells.”

The research was supported by the National Science Council, National Taiwan University Hospital, National Taiwan University, Liver Disease Prevention & Treatment Research Foundation of Taiwan, and the NIH Common Fund.

Authors on the paper, in addition to Boeke and Lu, are Yu-Yi Lin, Jin-Chuan Sheu, June-Tai Wu, Fang-Jen Lee, Min-I Lin, Fu-Tien Chian, Tong-Yuan Tai, Keh-Sung Tsai, and Lee-Ming Chuang, all of National Taiwan University; Yue Chen and Yinming Zhao, both of the University of Chicago; and Shelley L. Berger, Wistar Institute.

Media Contacts:
Audrey Huang; 410-614-5105; audrey@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>