Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins Scientists Turn on Fountain of Youth in Yeast

24.11.2011
Collaborations between Johns Hopkins and National Taiwan University researchers have successfully manipulated the life span of common, single-celled yeast organisms by figuring out how to remove and restore protein functions related to yeast aging.

A chemical variation of a “fuel-gauge” enzyme that senses energy in yeast acts like a life span clock: It is present in young organisms and progressively diminished as yeast cells age.

In a report in the September 16 edition of Cell, the scientists describe their identification of a new level of regulation of this age-related protein variant, showing that when they remove it, the organism’s life span is cut short and when they restore it, life span is dramatically extended.

In the case of yeast, the discovery reveals molecular components of an aging pathway that appears related to one that regulates longevity and lifespan in humans, according to Jef Boeke, Ph.D., professor of molecular biology, genetics and oncology, and director of the HiT Center and Technology Center for Networks and Pathways, Johns Hopkins University School of Medicine.

“This control of longevity is independent of the type described previously in yeast which had to do with calorie restriction,” Boeke says. “We believe that for the first time, we have a biochemical route to youth and aging that has nothing to do with diet.” The chemical variation, known as acetylation because it adds an acetyl group to an existing molecule, is a kind of “decoration” that goes on and off a protein — in this case, the protein Sip2 — much like an ornament can be put on and taken off a Christmas tree, Boeke says. Acetylation can profoundly change protein function in order to help an organism or system adapt quickly to its environment. Until now, acetylation had not been directly implicated in the aging pathway, so this is an all-new role and potential target for prevention or treatment strategies, the researchers say.

The team showed that acetylation of the protein Sip2 affected longevity defined in terms of how many times a yeast cell can divide, or “replicative life span.” The normal replicative lifespan in natural yeast is 25. In the yeast genetically modified by researchers to restore the chemical modification, life span extended to 38, an increase of about 50 percent.

The researchers were able to manipulate the yeast life span by mutating certain chemical residues to mimic the acetylated and deacetylated forms of the protein Sip2. They worked with live yeast in a dish, measuring and comparing the life spans of natural and genetically altered types by removing buds from the yeast every 90 minutes. The average lifespan in normal yeast is about 25 generations, which meant the researchers removed 25 newly budded cells from the mother yeast cell. As yeast cells age, each new generation takes longer to develop, so each round of the experiment lasted two to four weeks.

“We performed anti-aging therapy on yeast,” says the study’s first author, Jin-Ying Lu, M.D., Ph.D., of National Taiwan University. “When we give back this protein acetylation, we rescued the life span shortening in old cells. Our next task is to prove that this phenomenon also happens in mammalian cells.”

The research was supported by the National Science Council, National Taiwan University Hospital, National Taiwan University, Liver Disease Prevention & Treatment Research Foundation of Taiwan, and the NIH Common Fund.

Authors on the paper, in addition to Boeke and Lu, are Yu-Yi Lin, Jin-Chuan Sheu, June-Tai Wu, Fang-Jen Lee, Min-I Lin, Fu-Tien Chian, Tong-Yuan Tai, Keh-Sung Tsai, and Lee-Ming Chuang, all of National Taiwan University; Yue Chen and Yinming Zhao, both of the University of Chicago; and Shelley L. Berger, Wistar Institute.

Media Contacts:
Audrey Huang; 410-614-5105; audrey@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>