Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins scientists find cells responsible for bladder cancer's spread

10.08.2009
Powerful cells located in same tissue location as bladder stem cells

Johns Hopkins scientists have tracked down a powerful set of cells in bladder tumors that seem to be primarily responsible for the cancer's growth and spread using a technique that takes advantage of similarities between tumor and organ growth.

The findings, reported in the July Stem Cells, could help scientists develop new ways of finding and attacking similar cells in other types of cancer.

Researchers have long suspected that a subset of cells in cancerous tumors act much like developmentally primitive cells known as stem cells, which spur organ development early in life and remain present in nearly all the body's organs to repair or replace injured and aging tissues. These cancer cells and stem cells share a variety of characteristics including an unlimited lifespan and a propensity to migrate through tissues.

These same properties are the ones that make cancer particularly dangerous, says David Berman, M.D., Ph.D., associate professor of pathology, oncology, and urology at the Johns Hopkins University School of Medicine. If researchers had a way to identify and specifically target cancer cells with these properties, they could wipe out the population that sustains tumors and makes them grow.

Other researchers have identified proteins on the surfaces of these cancer cells that could work as markers, but because other cells sometimes shared these proteins, this approach can lead to errors, Berman says.

In the new study, led by Berman's postdoctoral research fellow Xiaobing He, Ph.D., the researchers reasoned that if these stem-like cancer cells behave like healthy stem cells, they might be physically located in the same compartments in tissue where stem cells normally reside. Using a surface protein marker previously identified for healthy bladder stem cells, the Hopkins team searched for cells with the same marker in sections from 55 human bladder tumors. They found that cancer cells displaying the marker were localized in an area at the intersection of two layers of cells known as epithelium and stroma, the place where bladder stem cells are typically located.

Using cancer cell lines grown from other bladder cancer patients, the researchers separated cells displaying the stem cell marker from those without it and injected these two populations into different sets of mice. Mice injected with the cancer cells displaying the marker always grew tumors, but those injected with the other cancer cells rarely did, suggesting that the stem-like cancer cells have an ability to create new tissue much like healthy stem cells do.

When the researchers surveyed both cancer cell populations to see which of their genes were most active, they found that genes with roles that are well-known hallmarks of cancer, such as cell proliferation and metastasis, were significantly more active in the stem-like cells than in the other cancer cells. Genes known to help cancers survive chemotherapy and radiation were also more active in the stem-like cells.

Other researchers who participated in this study include Luigi Marchionni, Wayne Yu, Akshay Sood, Jie Yang, Giovanni Parmigiani, and William Matsui, all of Johns Hopkins; and Donna E. Hansel of the Cleveland Clinic.

For more information, go to:

http://urology.jhu.edu/index.html
http://urology.jhu.edu/about/faculty.php?id=69
http://pathology.jhu.edu/berman/

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>