Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins scientists find cells responsible for bladder cancer's spread

10.08.2009
Powerful cells located in same tissue location as bladder stem cells

Johns Hopkins scientists have tracked down a powerful set of cells in bladder tumors that seem to be primarily responsible for the cancer's growth and spread using a technique that takes advantage of similarities between tumor and organ growth.

The findings, reported in the July Stem Cells, could help scientists develop new ways of finding and attacking similar cells in other types of cancer.

Researchers have long suspected that a subset of cells in cancerous tumors act much like developmentally primitive cells known as stem cells, which spur organ development early in life and remain present in nearly all the body's organs to repair or replace injured and aging tissues. These cancer cells and stem cells share a variety of characteristics including an unlimited lifespan and a propensity to migrate through tissues.

These same properties are the ones that make cancer particularly dangerous, says David Berman, M.D., Ph.D., associate professor of pathology, oncology, and urology at the Johns Hopkins University School of Medicine. If researchers had a way to identify and specifically target cancer cells with these properties, they could wipe out the population that sustains tumors and makes them grow.

Other researchers have identified proteins on the surfaces of these cancer cells that could work as markers, but because other cells sometimes shared these proteins, this approach can lead to errors, Berman says.

In the new study, led by Berman's postdoctoral research fellow Xiaobing He, Ph.D., the researchers reasoned that if these stem-like cancer cells behave like healthy stem cells, they might be physically located in the same compartments in tissue where stem cells normally reside. Using a surface protein marker previously identified for healthy bladder stem cells, the Hopkins team searched for cells with the same marker in sections from 55 human bladder tumors. They found that cancer cells displaying the marker were localized in an area at the intersection of two layers of cells known as epithelium and stroma, the place where bladder stem cells are typically located.

Using cancer cell lines grown from other bladder cancer patients, the researchers separated cells displaying the stem cell marker from those without it and injected these two populations into different sets of mice. Mice injected with the cancer cells displaying the marker always grew tumors, but those injected with the other cancer cells rarely did, suggesting that the stem-like cancer cells have an ability to create new tissue much like healthy stem cells do.

When the researchers surveyed both cancer cell populations to see which of their genes were most active, they found that genes with roles that are well-known hallmarks of cancer, such as cell proliferation and metastasis, were significantly more active in the stem-like cells than in the other cancer cells. Genes known to help cancers survive chemotherapy and radiation were also more active in the stem-like cells.

Other researchers who participated in this study include Luigi Marchionni, Wayne Yu, Akshay Sood, Jie Yang, Giovanni Parmigiani, and William Matsui, all of Johns Hopkins; and Donna E. Hansel of the Cleveland Clinic.

For more information, go to:

http://urology.jhu.edu/index.html
http://urology.jhu.edu/about/faculty.php?id=69
http://pathology.jhu.edu/berman/

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>