Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins scientists find cells responsible for bladder cancer's spread

10.08.2009
Powerful cells located in same tissue location as bladder stem cells

Johns Hopkins scientists have tracked down a powerful set of cells in bladder tumors that seem to be primarily responsible for the cancer's growth and spread using a technique that takes advantage of similarities between tumor and organ growth.

The findings, reported in the July Stem Cells, could help scientists develop new ways of finding and attacking similar cells in other types of cancer.

Researchers have long suspected that a subset of cells in cancerous tumors act much like developmentally primitive cells known as stem cells, which spur organ development early in life and remain present in nearly all the body's organs to repair or replace injured and aging tissues. These cancer cells and stem cells share a variety of characteristics including an unlimited lifespan and a propensity to migrate through tissues.

These same properties are the ones that make cancer particularly dangerous, says David Berman, M.D., Ph.D., associate professor of pathology, oncology, and urology at the Johns Hopkins University School of Medicine. If researchers had a way to identify and specifically target cancer cells with these properties, they could wipe out the population that sustains tumors and makes them grow.

Other researchers have identified proteins on the surfaces of these cancer cells that could work as markers, but because other cells sometimes shared these proteins, this approach can lead to errors, Berman says.

In the new study, led by Berman's postdoctoral research fellow Xiaobing He, Ph.D., the researchers reasoned that if these stem-like cancer cells behave like healthy stem cells, they might be physically located in the same compartments in tissue where stem cells normally reside. Using a surface protein marker previously identified for healthy bladder stem cells, the Hopkins team searched for cells with the same marker in sections from 55 human bladder tumors. They found that cancer cells displaying the marker were localized in an area at the intersection of two layers of cells known as epithelium and stroma, the place where bladder stem cells are typically located.

Using cancer cell lines grown from other bladder cancer patients, the researchers separated cells displaying the stem cell marker from those without it and injected these two populations into different sets of mice. Mice injected with the cancer cells displaying the marker always grew tumors, but those injected with the other cancer cells rarely did, suggesting that the stem-like cancer cells have an ability to create new tissue much like healthy stem cells do.

When the researchers surveyed both cancer cell populations to see which of their genes were most active, they found that genes with roles that are well-known hallmarks of cancer, such as cell proliferation and metastasis, were significantly more active in the stem-like cells than in the other cancer cells. Genes known to help cancers survive chemotherapy and radiation were also more active in the stem-like cells.

Other researchers who participated in this study include Luigi Marchionni, Wayne Yu, Akshay Sood, Jie Yang, Giovanni Parmigiani, and William Matsui, all of Johns Hopkins; and Donna E. Hansel of the Cleveland Clinic.

For more information, go to:

http://urology.jhu.edu/index.html
http://urology.jhu.edu/about/faculty.php?id=69
http://pathology.jhu.edu/berman/

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>