Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins scientists discover how protein trips up germs

18.02.2010
If bad bacteria lurk in your system, chances are they will bump into the immune system’s protective cells whose job is gobbling germs. The catch is that these do-gooders, known as macrophages, ingest and destroy only those infectious invaders that they can securely hook and reel in.

Now, Hopkins scientists have shown that a healthy immune response depends on a protein called TRPV2 (pronounced trip-vee-two) which, they discovered, is the means by which macrophages capitalize on brief and accidental encounters with nasty bugs.

Reporting in Nature Immunology in the January 31 online edition, the team proves that TRPV2 is necessary not only for macrophages to get a good grip on disease-causing bacteria, but also as the first line of defense, rallying the rest of the immune system to dispose of the most slippery and sizable germs.

“Imagine a fisherman who gets a bite, but is not strong enough to reel it in alone, so he sounds an alarm that brings others in to help,” analogizes Michael Caterina, M.D., Ph.D., associate professor of biological chemistry, Johns Hopkins University School of Medicine. “That’s similar to what’s happening here: A macrophage receptor will bind to a giant germ it encounters, but not tightly enough to secure it. So TRPV2 on the macrophage acts as an alarm: It tells the other receptors around the macrophage to consolidate in that one place to enhance the local binding of that bacteria.”

Ten years ago, Caterina was the first to clone TRPV2 along with a related protein, called TRPV1, which was found to be involved in sensing painful heat. His lab first looked at the nervous system in an attempt to ferret out TRPV2’s function, but changed tack when it became apparent that this protein is abundant in the immune system, particularly in macrophages.

To learn what role TRPV2 might play in fighting infection, Tiffany Link, a graduate student in Cellular and Molecular Medicine, harvested macrophages from the bellies of two sets of mice: a “wild type” control group, and a group that had been genetically engineered to lack TRPV2. She grew the normal immune cells and the engineered mutant cells in separate dishes, and then added latex beads that were coated with antibody molecules. The normal immune cells efficiently gobbled the beads, while the mutant cells lacking TRPV2 couldn’t ingest nearly as well, indicating that TRPV2 was important in proper functioning of macrophages.

Because the defective macrophages weren’t completely inept in their germ-eating job, Caterina suspects that other proteins like TRPV2 are likely players, too, but TRPV2 clearly makes the germ-clearing process more efficient.

Link, who investigated each separate step macrophages take to successfully consume bacteria, found that in the mutant cells lacking TRPV2, the problem existed from the very moment of initial contact with a germ.

“Without TRPV2, macrophages don’t bind bacteria and engulf them right away,” Link says, “and as a result, the rest of the immune system doesn’t get involved and clear the infection,” Link says.

In order to find out if a mouse missing TRPV2 would be more susceptible to bacterial infection, Link injected live bacteria into the bellies of wild-type mice and those lacking TRPV2. The mice lacking TRPV2 died within four days of infection — significantly sooner than the wild types which died within eight days after infection.

Citing the fact that TRPV2 is important not only in helping macrophages to bind to germs, but also in clearing bacterial infection, Caterina noted its potential as a useful drug target. And in cases of autoimmune diseases — arthritis, lupus and asthma, for example — it’s possible that the inhibition of TRPV2 might help pull back an overactive immune system.

“We think there are going to be a lot of implications beyond just prevention of infectious diseases where this research about TRPV2’s function in macrophages might be relevant,” Link adds. “Macrophages consume cholesterol and contribute to hardening of the arteries. They also clear out debris when nerves are injured so that new nerves can grow through that area.”

The research was funded by the National Institutes of Health.

In addition to Caterina and Link, authors of the paper are Una Park, Becky M. Vonakis, Daniel M. Raben, Mark J. Soloski, all of Johns Hopkins.

On the Web:
http://neuroscience.jhu.edu/MichaelCaterina.php
http://www.nature.com/ni/index.html
Related Video:
Johns Hopkins scientist Michael Caterina tells about the history of the TRP channel.

http://www.youtube.com/user/JohnsHopkinsMedicine#p/u/0/GGL-QSVUW3s

Johns Hopkins researcher Tiffany Link defines TRPV2 as an ion channel.
http://www.youtube.com/user/JohnsHopkinsMedicine#p/u/0/aR0meSN23lo
Media Contacts:
Maryalice Yakutchik; 443-287-2251; myakutc1@jhmi.edu
Audrey Huang; 410-614-5105; audrey@jhmi.edu

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>