Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New hope for treatment of neurodegenerative disorder

USC researchers uncover clues about cause of Huntington's disease

Researchers from the University of Southern California have taken an important first step toward protecting against Huntington disease using gene therapy.

Huntington Disease is an incurable neurological disorder characterized by uncontrolled movements, emotional instability and loss of intellectual faculties. It affects about 30,000 people in the United States, and children of parents with the disease have a 50 percent chance of inheriting it themselves.

"Our findings allow for the possibility that controlled over-expression of RCAN1-1L might in the future be a viable avenue for therapeutic intervention in Huntington disease patients," said Kelvin J. A. Davies, professor of gerontology in the USC Davis School of Gerontology and professor of biological sciences in the USC College of Letters, Arts and Sciences.

In a paper in the June 2009 issue of Journal of Biological Chemistry, now available online, Davies and his coauthors use cell culture findings to show that a form of the gene RCAN1, known as RCAN1-1L, is dramatically decreased in human brains affected by Huntington disease. RCAN1-1L was first discovered in Davies' lab.

The investigators also show that increasing levels of RCAN1-1L rescues cells from the toxic effects of Huntington disease, a result that could someday lead to new avenues of treatment, according to Davies.

"Our discovery offers real hope and may even have wide-ranging implications for a variety of other important CAG repeat-related diseases," Davies said.

While the Huntington gene, which makes the normal Huntington protein, is an essential component to healthy nerve cells, the mutant Huntington gene makes a toxic mutant Huntington protein. Mutant Huntington contains increased levels of the amino acid glutamine, which is generated by a repetition of the DNA triplet CAG.

A normal Huntington gene has a sequence of between six and 34 CAG repeats. Any strand of DNA possessing more than 40 CAG repeats indicates the carrier will develop Huntington disease, according to the researchers.

Indeed, the more repeats of CAG, the earlier the disease manifests itself and the more devastating the disease becomes. Currently available drugs do little more than help control erratic movements associated with the condition.

"It is important to keep in mind that these protective findings are in-vitro, meaning in cell cultures. Further proof of protection by RCAN1-1L will be required in-vivo, or in actual Huntington disease patients," said lead author Gennady Ermak, research associate professor at the USC Davis School of Gerontology.

Previous in-vitro research has revealed that adding the phosphate PO4, an inorganic chemical, to the mutant Huntington protein can protect against the mutant gene. This process is called phosphorylation, and can be achieved by either inhibiting an enzyme (calcineurin) or by activating an enzyme (Akt).

"Our findings point to increased phosphorylation of mutant Huntington through calcineurin inhibition as the likely mechanism by which RCAN1-1L may be protective against the mutant Huntington," Ermak said.

As Davies explained: "RCAN1-1L may actually play a role in the cause of Huntington disease."

"The gene is required to down-regulate the activity of calcineurin. We have previously linked too much RCAN1-1L expression to Alzheimer's disease," Davies said. "Thus, Alzheimer's disease and Huntington disease appear to involve opposite problems with RCAN1 expression and calcineurin activity."

In cases of Huntington disease, too little RCAN1-1L may allow calcineurin to act unopposed and remove too many phosphates from the mutant Huntington protein.

"We observed complete protection against the mutant Huntington by RCAN1-1L," Ermak said, but he reiterated the need for further research with Huntington disease patients.

The results offer a new direction for further research, Davies added.

Other aging disorders also associated with the expansion of repeated CAG code include: DRPLA (Dentratorubropallidoluysian atrophy), SBMA (Spinobulbar muscular atrophy or Kennedy disease) and SCA1 (Spinocerebellar ataxia Type 1).

Research was supported by the CHDI Foundation, Inc., and the High Q Foundation, both committed to the rapid discovery and development of drugs that delay or slow Huntington disease.

Suzanne Wu | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>