Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hope for patients - Researchers at Hohenstein successfully colonise a textile implant with human stem cells

18.09.2009
Stem cells are widely considered a major new hope in medicine because they are capable of differentiating into a broad variety of human cell types.

This characteristic makes them particularly interesting for recreating irreversibly damaged tissues, following a heart attack for example, or in cases of injury to the spinal cord.

Researchers at the Institute for Hygiene and Biotechnology (IHB) at the Hohenstein Institute have successfully devised a special, optimised textile coating that allows adult human stem cells to colonise the surface fibres of textile implants. A molecular layer of natural biomaterials from the human extra-cellular matrix has been developed for this purpose.

Cell colonies derived from the body cells of the patient allow the tiny "all-rounders" to be placed directly at the site of damaged tissue. New cardiac muscle cells, for example, can be generated by introducing certain factors. These can then be used to replace parts of the heart that have been destroyed during a heart attack.

The head of the IHB, Dr. Dirk Hoefer says, "This is an initial success in the direction of textile stem cell therapy. But we still need to develop better understanding of how stem cells colonise - meaning interact with - fibres. Therefore, we will continue working on optimising colonisation of textile implants in order to provide as many cells as possible per unit of fibre surface and with the required factors in a targeted way. "

Adult stem cells are found in many types of human tissues and, unlike embryonic stem cells, do not have to be harvested from human embryos, a controversial approach that is frequently rejected on ethical grounds. The mesenchymal stem cells used by the scientists are multipotent, meaning that they can, for example, develop into heart muscle, bone or cartilaginous tissue. Colonising stem cells on textiles opens up far-reaching therapeutic possibilities for regenerative medicine. Textile implants are frequently used during surgery requiring the stabilisation of injured tissue. There are, for example, heart patches made of biomaterial that can be applied to damaged cardiac tissues. After a certain time, the implanted biodegradable foreign objects are dissolved by the patient's body.

The aim of the researchers at Hohenstein is to colonise diverse textiles with human stem cells in the laboratory and then to convert them directly into the cell type of the target tissue. The scientists are also currently working on a technique for colour-marking the stem cells in order to make it possible to identify them even after differentiation into heart, cartilage or bone tissue, as well as ease following the post-implantation progress of colonised textiles.

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>