Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hope for patients - Researchers at Hohenstein successfully colonise a textile implant with human stem cells

18.09.2009
Stem cells are widely considered a major new hope in medicine because they are capable of differentiating into a broad variety of human cell types.

This characteristic makes them particularly interesting for recreating irreversibly damaged tissues, following a heart attack for example, or in cases of injury to the spinal cord.

Researchers at the Institute for Hygiene and Biotechnology (IHB) at the Hohenstein Institute have successfully devised a special, optimised textile coating that allows adult human stem cells to colonise the surface fibres of textile implants. A molecular layer of natural biomaterials from the human extra-cellular matrix has been developed for this purpose.

Cell colonies derived from the body cells of the patient allow the tiny "all-rounders" to be placed directly at the site of damaged tissue. New cardiac muscle cells, for example, can be generated by introducing certain factors. These can then be used to replace parts of the heart that have been destroyed during a heart attack.

The head of the IHB, Dr. Dirk Hoefer says, "This is an initial success in the direction of textile stem cell therapy. But we still need to develop better understanding of how stem cells colonise - meaning interact with - fibres. Therefore, we will continue working on optimising colonisation of textile implants in order to provide as many cells as possible per unit of fibre surface and with the required factors in a targeted way. "

Adult stem cells are found in many types of human tissues and, unlike embryonic stem cells, do not have to be harvested from human embryos, a controversial approach that is frequently rejected on ethical grounds. The mesenchymal stem cells used by the scientists are multipotent, meaning that they can, for example, develop into heart muscle, bone or cartilaginous tissue. Colonising stem cells on textiles opens up far-reaching therapeutic possibilities for regenerative medicine. Textile implants are frequently used during surgery requiring the stabilisation of injured tissue. There are, for example, heart patches made of biomaterial that can be applied to damaged cardiac tissues. After a certain time, the implanted biodegradable foreign objects are dissolved by the patient's body.

The aim of the researchers at Hohenstein is to colonise diverse textiles with human stem cells in the laboratory and then to convert them directly into the cell type of the target tissue. The scientists are also currently working on a technique for colour-marking the stem cells in order to make it possible to identify them even after differentiation into heart, cartilage or bone tissue, as well as ease following the post-implantation progress of colonised textiles.

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>